首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   14篇
  2023年   1篇
  2022年   4篇
  2021年   14篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   15篇
  2013年   31篇
  2012年   28篇
  2011年   24篇
  2010年   14篇
  2009年   10篇
  2008年   24篇
  2007年   23篇
  2006年   25篇
  2005年   19篇
  2004年   11篇
  2003年   15篇
  2002年   17篇
  2001年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1974年   2篇
  1972年   3篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
  1965年   1篇
排序方式: 共有369条查询结果,搜索用时 68 毫秒
101.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates c-jun N-terminal kinase (JNK) and can induce cell death in neurons. By contrast, the activation of phosphatidylinositol 3-kinase and AKT/protein kinase B (PKB) acts to suppress neuronal apoptosis. Here, we report a functional interaction between MLK3 and AKT1/PKBalpha. Endogenous MLK3 and AKT1 interact in HepG2 cells, and this interaction is regulated by insulin. The interaction domain maps to the C-terminal half of MLK3 (amino acids 511-847), and this region also contains a putative AKT phosphorylation consensus sequence. Endogenous JNK, MKK7, and MLK3 kinase activities in HepG2 cells are significantly attenuated by insulin treatment, whereas the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin reversed the effect. Finally, MLK3-mediated JNK activation is inhibited by AKT1. AKT phosphorylates MLK3 on serine 674 both in vitro and in vivo. Furthermore, the expression of activated AKT1 inhibits MLK3-mediated cell death in a manner dependent on serine 674 phosphorylation. Thus, these data provide the first direct link between MLK3-mediated cell death and its regulation by a cell survival signaling protein, AKT1.  相似文献   
102.
103.
Angiomatous lesions are common in infants and children. Hemangioendotheliomas (HE) represent one type of these lesions. Endothelial cell proliferation and the development of vascular/blood cell-filled spaces are inherent in the growth of HE. Therefore, understanding mechanisms that regulate the proliferation of these lesions should provide key insight into mechanisms regulating angiogenesis. A murine model was used to test the significance of monocyte chemoattractant protein (MCP)-1 in HE proliferation. EOMA cells, a cell line derived from a spontaneously arising murine HE, generate these lesions with 100% efficiency when injected subcutaneously into syngeneic mice. MCP-1 produced by EOMA cells recruit macrophages, which were shown to induce angiogenic behavior in EOMA cells by stimulating transwell migration and inducing sprout formation on type I collagen gels. When EOMA cells were injected into MCP-1–/– mice, only 50% of the mice developed tumors, presumably because the low levels of MCP-1 expressed by the injected EOMA cells were enough to overcome any host deficits of this chemokine. When EOMA cells were coinjected with a neutralizing antibody to MCP-1, tumors failed to develop in any of the treated mice, including syngeneic 129P3, C57Bl/6 (wild type), and MCP-1–/–. These results present the first evidence that MCP-1 is required for HE proliferation and may promote the growth of these lesions by stimulating angiogenic behavior of endothelial cells. This study has produced the first in vivo evidence of a complete response for any neoplasm, specifically a vascular proliferative lesion, to anti-MCP-1 therapy in animals with intact immune systems. endothelium; vascular; macrophage; redox; angiogenesis  相似文献   
104.
Under normoxic conditions, pO2 ranges from 90 to <3 torr in mammalian organs with the heart at approximately 35 torr (5%) and arterial blood at approximately 100 torr. Thus, "normoxia" for cells is an adjustable variable. In response to chronic moderate hypoxia, cells adjust their normoxia set point such that reoxygenation-dependent relative elevation of pO2 results in perceived hyperoxia. We hypothesized that O2, even in marginal relative excess of the pO2 to which cells are adjusted, results in the activation of specific O2-sensitive signal transduction pathways that alter cellular phenotype and function. Thus, reperfusion causes damage to the tissue at the focus of ischemia while triggering remodeling in the peri-infarct region by means of perceived hyperoxia. We reported first evidence demonstrating that perceived hyperoxia triggers the differentiation of cardiac fibroblasts (CF) to myofibroblasts by a p21-dependent mechanism (Roy, S., Khanna, S., Bickerstaff, A. A., Subramanian, S. V., Atalay, M., Bierl, M., Pendyala, S., Levy, D., Sharma, N., Venojarvi, M., Strauch, A., Orosz, C. G., and Sen, C. K. (2003) Circ. Res. 92, 264-271). Here, we sought to characterize the genomic response to perceived hyperoxia in CF using GeneChips trade mark. Candidate genes were identified, confirmed and clustered. Cell cycle- and differentiation-associated genes represented a key target of perceived hyperoxia. Bioinformatics-assisted pathway reconstruction revealed the specific signaling processes that were sensitive to perceived hyperoxia. To test the significance of our in vitro findings, a survival model of rat heart focal ischemia-reperfusion (I-R) was investigated. A significant induction in p21 mRNA expression was observed in I-R tissue. The current results provide a comprehensive molecular definition of perceived hyperoxia in cultured CF. Furthermore, the first evidence demonstrating activation of perceived hyperoxia sensitive genes in the cardiac I-R tissue is presented.  相似文献   
105.
Anti-angiogenic property of edible berries   总被引:8,自引:0,他引:8  
Recent studies show that edible berries may have potent chemopreventive properties. Anti-angiogenic approaches to prevent and treat cancer represent a priority area in investigative tumor biology. Vascular endothelial growth factor (VEGF) plays a crucial role for the vascularization of tumors. The vasculature in adult skin remains normally quiescent. However, skin retains the capacity for brisk initiation of angiogenesis during inflammatory skin diseases such as psoriasis and skin cancers. We sought to test the effects of multiple berry extracts on inducible VEGF expression by human HaCaT keratinocytes. Six berry extracts (wild blueberry, bilberry, cranberry, elderberry, raspberry seed, and strawberry) and a grape seed proanthocyanidin extract (GSPE) were studied. The extracts and uptake of their constituents by HaCaT were studied using a multi-channel HPLC-CoulArray approach. Antioxidant activity of the extracts was determined by ORAC. Cranberry, elderberry and raspberry seed samples were observed to possess comparable ORAC values. The antioxidant capacity of these samples was significantly lower than that of the other samples studied. The ORAC values of strawberry powder and GSPE were higher than cranberry, elderberry or raspberry seed but significantly lower than the other samples studied. Wild bilberry and blueberry extracts possessed the highest ORAC values. Each of the berry samples studied significantly inhibited both H2O2 as well as TNF alpha induced VEGF expression by the human keratinocytes. This effect was not shared by other antioxidants such as alpha-tocopherol or GSPE but was commonly shared by pure flavonoids. Matrigel assay using human dermal microvascular endothelial cells showed that edible berries impair angiogenesis.  相似文献   
106.
Nitric oxide (NO) is a potent bioactive molecule produced in the presence of NO synthase (NOS) enzymes, which mediates numerous physiological functions under constitutive conditions. Sustained overproduction of NO (and NO-reaction products), typically under inductive conditions, can lead to cell cycle arrest and cellular apoptosis. Furthermore, carcinogenesis may result from mutational events following NO-mediated DNA damage and hindrance to DNA repair (e.g., mutation of tumour-suppressor gene p53). In a majority of human and experimental tumours, tumour-derived NO appears to stimulate tumour progression; however, for a minority of tumours, the opposite has been reported. This apparent discrepancy may be explained by differential susceptibility of tumour cells to NO-mediated cytostasis or apoptosis, and the emergence of NO-resistant and NO-dependent clones. NO-resistance may be mediated by p53 inactivation, and upregulation of cyclo-oxygenase-2 and heat shock protein 70 (HSP70). In a murine mammary tumour model, tumour-derived NO promoted tumour growth and metastasis by enhancing invasive, angiogenic, and migratory capacities of tumour cells. Invasion stimulation followed the altered balance of matrix metalloproteases and their inhibitors; migration stimulation followed activation of guanylate cyclase and MAP kinase pathways. Selective NOS inhibitors may have a therapeutic role in certain cancers.  相似文献   
107.
The purpose of this study was to compare the rates of muscle deoxygenation in the exercising muscles during incremental arm cranking and leg cycling exercise in healthy men and women. Fifteen men and 10 women completed arm cranking and leg cycling tests to exhaustion in separate sessions in a counterbalanced order. Cardiorespiratory measurements were monitored using an automated metabolic cart interfaced with an electrocardiogram. Tissue absorbency was recorded continuously at 760 nm and 850 nm during incremental exercise and 6 min of recovery, with a near infrared spectrometer interfaced with a computer. Muscle oxygenation was calculated from the tissue absorbency measurements at 30%, 45%, 60%, 75% and 90% of peak oxygen uptake (V˙O2) during each exercise mode and is expressed as a percentage of the maximal range observed during exercise and recovery (%Mox). Exponential regression analysis indicated significant inverse relationships (P < 0.01) between %Mox and absolute V˙O2 during arm cranking and leg cycling in men (multiple R = −0.96 and −0.99, respectively) and women (R =−0.94 and −0.99, respectively). No significant interaction was observed for the %Mox between the two exercise modes and between the two genders. The rate of muscle deoxygenation per litre of V˙O2 was 31.1% and 26.4% during arm cranking and leg cycling, respectively, in men, and 26.3% and 37.4% respectively, in women. It was concluded that the rate of decline in %Mox for a given increase in V˙O2 between 30% and 90% of the peak V˙O2 was independent of exercise mode and gender. Accepted: 31 March 1998  相似文献   
108.
Rats that consume a diet 50% rich in protein exhibit hyperactivity and hyperresponsiveness to nociceptive stimuli, in which facilitation of dopaminergic activity has been implicated. We studied the regional changes in the concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the brains of rats that were maintained on high-protein (HP, 50% casein), normal-protein (NP, 20% casein), and low-protein (LP, 8% casein) diets for 36 weeks. Brain nuclei that represented different DAergic systems were punchdissected and analyzed using HPLC. In the substantia nigra, the striatum, and the dentate gyrus, DA concentrations decreased and increased, respectively, with a decrease and increase in dietary protein (p<0.05 compared to the NP diet). Similar trends in the effect of the HP diet were observed in the ventral tegmental area, amygdala, frontal cortex, subiculum, centromedial nucleus (CM) of the thalamus, and inferior colliculi (IC), although the differences in DA concentrations were not statistically significant. These brain areas also showed a pattern of decreased DA concentration in association with the LP diet, and the differences were statistically significant (p<0.05) in the CM and IC. DA concentrations in most regions of the midbrain and brainstem were not different between the diet groups, nor were consistent trends observed in those regions. Also, there were no consistent relationships between DOPAC/DA and HVA/DA ratios and dietary protein level. These data suggest that only discrete dopaminergic neuronal circuits in the rat forebrain were sensitive to changes in dietary protein level.  相似文献   
109.
The possible mechanism of attenuation of thyrotropin response to exogenous thyrotropin-releasing hormone after repeated administrations of the releasing hormone has been studied. To this end, the effect of prolonged hormone treatment on the binding of hormone to its receptor in the anterior pituitary gland has been evaluated. The data show that prolonged hormonal treatment resulted in a reduction in the number (Bmax) but not the binding affinity (KD) of the receptor. The effect was reversible and depended on the duration of treatment. This phenomenon of down regulation or the decrease in the receptor number was found not to be due to either the metabolism of releasing hormone or its ability to activate pituitary-thyroid-axis.  相似文献   
110.
Inflammatory disorders represent a substantial health problem. Medicinal plants belonging to the Burseraceae family, including Boswellia, are especially known for their anti-inflammatory properties. The gum resin of Boswellia serrata contains boswellic acids, which inhibit leukotriene biosynthesis. A series of chronic inflammatory diseases are perpetuated by leukotrienes. Although Boswellia extract has proven to be anti-inflammatory in clinical trials, the underlying mechanisms remain to be characterized. TNF alpha represents one of the most widely recognized mediators of inflammation. One mechanism by which TNFalpha causes inflammation is by potently inducing the expression of adhesion molecules such as VCAM-1. We sought to test the genetic basis of the antiinflammatory effects of BE (standardized Boswellia extract, 5-Loxin) in a system of TNF alpha-induced gene expression in human microvascular endothelial cells. We conducted the first whole genome screen for TNF alpha- inducible genes in human microvascular cells (HMEC). Acutely, TNF alpha induced 522 genes and downregulated 141 genes in nine out of nine pairwise comparisons. Of the 522 genes induced by TNF alpha in HMEC, 113 genes were clearly sensitive to BE treatment. Such genes directly related to inflammation, cell adhesion, and proteolysis. The robust BE-sensitive candidate genes were then subjected to further processing for the identification of BE-sensitive signaling pathways. The use of resources such as GenMAPP, KEGG, and gene ontology led to the recognition of the primary BE-sensitive TNF alpha-inducible pathways. BE prevented the TNF alpha-induced expression of matrix metalloproteinases. BE also prevented the inducible expression of mediators of apoptosis. Most strikingly, however, TNF alpha-inducible expression of VCAM-1 and ICAM-1 were observed to be sensitive to BE. Realtime PCR studies showed that while TNF alpha potently induced VCAM-1 gene expression, BE completely prevented it. This result confirmed our microarray findings and built a compelling case for the anti-inflammatory property of BE. In an in vivo model of carrageenan-induced rat paw inflammation, we observed a significant antiinflammatory property of BE consistent with our in vitro findings. These findings warrant further research aimed at identifying the signaling mechanisms by which BE exerts its anti-inflammatory effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号