首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   10篇
  2023年   2篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   8篇
  2013年   7篇
  2012年   11篇
  2011年   13篇
  2010年   3篇
  2009年   4篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2004年   1篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有164条查询结果,搜索用时 31 毫秒
121.
122.
Three polysaccharide fractions (PS-I, PS-II, and PS-III) were isolated from the aqueous extract of a hybrid mushroom obtained through backcross mating of a somatic hybrid mushroom PfloVv12 (Sterile line) with Volvariellavolvacea. PfloVv12 was obtained through protoplast fusion of Pleurotusflorida and V. volvacea. PS-I was identified as 1,6-β glucan. PS-II and PS-III were identified as mannoglucogalactan but differing in molecular weights only. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation, and NMR experiment (1H, 13C, DEPT-135, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC) the structures of these polysaccharides were established as;  相似文献   
123.
The peptidyl transferase center of the domain V of large ribosomal RNA in the prokaryotic and eukaryotic cytosolic ribosomes acts as general protein folding modulator. We showed earlier that one part of the domain V (RNA1 containing the peptidyl transferase loop) binds unfolded protein and directs it to a folding competent state (FCS) that is released by the other part (RNA2) to attain the folded native state by itself. Here we show that the peptidyl transferase loop of the mitochondrial ribosome releases unfolded proteins in FCS extremely slowly despite its lack of the rRNA segment analogous to RNA2. The release of FCS can be hastened by the equivalent activity of RNA2 or the large subunit proteins of the mitochondrial ribosome. The RNA2 or large subunit proteins probably introduce some allosteric change in the peptidyl transferase loop to enable it to release proteins in FCS.  相似文献   
124.
125.
As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York(1) collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions using an in silico model. The primary goal of the workshop was to cultivate student interest in computational modeling and analysis of complex systems by introducing them through lectures and laboratory activities to current research in cardiac modeling and by engaging them in a hands-on research experience. The success of the workshop lay in the exposure of the students to active researchers and experts in their fields, the use of hands-on activities to communicate important concepts, active engagement of the students in research, and explanations of the significance of results as the students generated them. The workshop content addressed how spiral waves of electrical activity are initiated in the heart and how different parameter values affect the dynamics of these reentrant waves. Spiral waves are clinically associated with tachycardia, when the waves remain stable, and with fibrillation, when the waves exhibit breakup. All in silico experiments were conducted by simulating a mathematical model of cardiac cells on graphics processing units instead of the standard central processing units of desktop computers. This approach decreased the run time for each simulation to almost real time, thereby allowing the students to quickly analyze and characterize the simulated arrhythmias. Results from these simulations, as well as some of the background and methodology taught during the workshop, is presented in this article along with the programming code and the explanations of simulation results in an effort to allow other teachers and students to perform their own demonstrations, simulations, and studies.  相似文献   
126.
In the present study, we investigated the cytotoxic mechanism of Fumonisin B1 (FB1) in mice colonic region in a time course manner. Herein, after consecutive 4 days of exposure to FBI (2.5 mg/kg body weight), we observed disintegration of mice colon, as evidenced by histopathological analysis. FB1 significantly increased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activities in serum and plasma, decreased ceramide level, increased sphinganine level, and increased lipid peroxidase level along with the breakdown of the antioxidant system. Further, FB1‐induced ER stress caused apoptosis and autophagy activation in mice colon, evidenced by increased expression of IRE1‐α, p‐JNK, Casp3, and LC3I/II. In addition, we also noticed a reduced protein kinase C expression in mice colon exposed to FB1, suggesting its role in ER stress‐induced cell death. Taken together, study suggests both physiologically and biochemically, FB1 toxicity to mice colon induced by oxidative stress‐associated apoptosis and autophagy activation.  相似文献   
127.
SNF1‐related protein kinase 1 (SnRK1) is a central regulator of plant growth during energy starvation. The FCS‐like zinc finger (FLZ) proteins have recently been identified as adaptor proteins which facilitate the interaction of SnRK1 with other proteins. In this study, we found that two starvation‐induced FLZ genes, FLZ6 and FLZ10, work as repressors of SnRK1 signalling. The reduced expression of these genes resulted in an increase in the level of SnRK1α1, which is the major catalytic subunit of SnRK1. This lead to a concomitant increase in phosphorylated protein and SnRK1 activity in the flz6 and flz10 mutants. FLZ6 and FLZ10 specifically interact with SnRK1α subunits in the cytoplasmic foci, which co‐localized with the endoplasmic reticulum. In physiological assays, similar to the SnRK1α1 overexpression line, flz mutants showed compromised growth. Further, growth promotion in response to favourable growth conditions was found to be attenuated in the mutants. The enhanced SnRK1 activity in the mutants resulted in a reduction in the level of phosphorylated RIBOSOMAL S6 KINASE and the expression of E2Fa and its targets, indicating that TARGET OF RAPAMYCIN‐dependent promotion of protein synthesis and cell cycle progression is impaired. Taken together, this study uncovers a plant‐specific modulation of SnRK1 signalling.  相似文献   
128.
RecA protein makes stable joint molecules from fully duplex DNA and molecules that are partially single-stranded; the latter may be either duplex molecules with an internal gap in one strand or molecules with single-stranded ends. Stable joint molecules form only when the end of at least one strand is in a homologous region. When RecA protein pairs linear duplex molecules and tailed molecules that share the same sequence end to end, the joints, which are located away from the single-stranded tails in most instances, have the electron microscopic appearance associated with the Holliday structure resulting from the reciprocal exchange of strands. The reaction leading to reciprocal strand exchange involves the concerted displacement of a strand from the end of the duplex molecule. These observations support the view that RecA protein makes stable joint molecules only by transferring strands and not by the side-by-side pairing of duplex regions.  相似文献   
129.
E. coil RecA protein and topolsomerase I, acting on superhelical DNA and circular single strands in the presence of ATP and Mg2+, topologically link single-stranded molecules to one another, and single-stranded molecules to duplex DNA. When super-helical DNA is relaxed by prior incubation with topoisomerase, it is a poor substrate for catenation. Extensive homology stimulates the catenation of circular single-stranded DNA and superhelical DNA, whereas little reaction occurs between these forms of the closely related DNAs of phages φX174 and G4, indicating that, in conjunction with topoisomerase I, RecA protein can discriminate perfect or nearly perfect homology from a high degree of relatedness. Circular single-stranded G4 DNA reacts with superhelical DNA of a chimeric phage, M13Goril, to form catenanes, at least half of which survive heating at 80°C following restriction cleavage in the M13 region, but few of which survive following restriction cleavage in the G4 region. Electron microscopic examination of catenated molecules cleaved in the M13 region reveals that in most cases the single-stranded G4 DNA is joined to the linear duplex M13(G4) DNA in the homologous G4 region. The junction frequently has the appearance of a D loop, with an extent equivalent to 100 or more bp. We conclude that a significant fraction of catenanes were hemicatenanes, in which the single-stranded circle was topologically linked, probably by multiple turns, to its complementary strand in the duplex DNA. These observations support the previous conclusion that RecA protein can pair a single strand with its complementary strand in duplex DNA in a side-by-side fashion without a free end in any of the three strands.  相似文献   
130.
The aim of the present work is to design an electrode for biosensors by covalent immobilization of the redox enzyme. In the covalently modified electrode, the biocatalyst is located close to the electrode surface and this is expected to enhance the electron transfer rate from the enzyme to the electrode. Several methods of covalent immobilization of enzymes onto a glassy carbon surface are described. We have chosen horse radish peroxidase enzyme in our study but any other suitable enzyme can be immobilized depending on the intended use. A three step procedure that includes (i) heat treatment of matrix at l00-l10°C to remove volatiles and absorbates, (ii) chemjcal pretreatment to introduce functional groups like -OH, -NO2, -Br etc. followed by (iii) glutaraldehyde coupling of the enzyme (for the nitrated matix after subsequent reduction) or modification of the matrix by carboxymethylation and enzyme coupling using carbodiimide (for hydroxylated matrix) was followed. The amount of enzyme immobilized onto the carbon surface was estimated by spectrophotometric enzymatic activity assay, commonly used for the soluble enzyme. We found that simple nitration did not introduce any significant amount of functional groups and the matrix with hydrogen peroxide pretreatment showed the highest enzyme loading of 0.05 U/mg of carbon matrix. The HRP enzyme electrode was tested in a rotating disk experiment for its response with the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号