首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8771篇
  免费   823篇
  国内免费   94篇
  9688篇
  2023年   37篇
  2022年   136篇
  2021年   183篇
  2020年   108篇
  2019年   136篇
  2018年   149篇
  2017年   139篇
  2016年   248篇
  2015年   446篇
  2014年   427篇
  2013年   524篇
  2012年   685篇
  2011年   626篇
  2010年   381篇
  2009年   346篇
  2008年   464篇
  2007年   417篇
  2006年   428篇
  2005年   373篇
  2004年   328篇
  2003年   306篇
  2002年   255篇
  2001年   236篇
  2000年   229篇
  1999年   185篇
  1998年   83篇
  1997年   58篇
  1996年   69篇
  1995年   57篇
  1994年   46篇
  1993年   59篇
  1992年   124篇
  1991年   95篇
  1990年   101篇
  1989年   108篇
  1988年   77篇
  1987年   83篇
  1986年   88篇
  1985年   90篇
  1984年   61篇
  1983年   62篇
  1982年   50篇
  1981年   49篇
  1980年   46篇
  1979年   76篇
  1978年   61篇
  1977年   45篇
  1976年   47篇
  1974年   44篇
  1973年   41篇
排序方式: 共有9688条查询结果,搜索用时 15 毫秒
991.
PURPOSE OF REVIEW: We have selectively reviewed some of the latest papers on the mechanistic role of C-reactive protein in atherosclerotic cardiovascular disease. RECENT DEVELOPMENTS: C-reactive protein is known to activate the classic pathway of the complement system. One paper examined the role of C-reactive protein in complement activation by enzymatically remodeled LDL proteins. Enzymatically remodeled LDL was found to induce complement activation with or without C-reactive protein, but in the presence of C-reactive protein the activation of complement halted before its terminal sequence. Complement activation by C-reactive protein in atherogenesis remains controversial. Different laboratories have reported the multi-organ origin of C-reactive protein. The atherosclerotic lesion itself is another place where C-reactive protein could be produced. Numerous studies have continued to dissect the potential diverse proatherogenic actions of C-reactive protein on cultured vascular cells. Caution must be exercised in inadequately controlled studies that have unwittingly used commercial C-reactive protein preparations contaminated by other bioactive components. In contrast to in-vitro experiments, in-vivo studies that support a proatherogenic role of C-reactive protein are less likely to be subject to misinterpretation. SUMMARY: Evidence suggests that C-reactive protein is a proatherogenic molecule that plays an active role. The amount of C-reactive protein in lesions is determined by its plasma levels and its local production. The biological effect of C-reactive protein on atherosclerosis development seems to encompass a complex network of interactions with other players in immunity and inflammation, such as the complement system, as well as a direct effect of C-reactive protein on the cells involved in lesion growth and development.  相似文献   
992.
A series of formylchromone derivatives were synthesized as PTP1B inhibitors and some of them were potent against PTP1B with IC50 values as low as 1.0 microM. They exhibited remarkable selectivity for PTP1B over other human PTPases. Kinetic studies revealed that formylchromone derivatives are irreversible and active site-directed inhibitors. Molecular modeling study identified the orientation of the inhibitor bound at the active site of PTP1B.  相似文献   
993.
994.
995.
Abdominal aortic aneurysm (AAA) is a complex remodeling process that involves both synthesis and degradation of extracellular matrix proteins in the aortic wall, leading to decreased tensile strength, progressive dilation and eventual rupture. Chronic inflammation, increased local production of elastin-degrading proteases by inflammatory cells and destruction of medial elastic lamellae play important roles in aneurysm progression. Neovascularization in all layers of the arterial wall is prominent and angiogenesis can facilitate chronic inflammation. It is still unclear what initiates aneurysmal dilation and what determines its progression. The complex nature of the process has defied elucidation. Apart from macrophages, the predominant immune cell infiltrates reported so far are CD3(+)T cells that express CD4 and CD8. Infiltrates of type 2 Th cells and their production of IL-4 and IL-5 have been implicated in AAA development. However, NKT and NK cells have a Th0 cytokine profile and can also produce type 2 as well as type 1 (IL-2 and IFNgamma) cytokines. We have demonstrated the presence of NK and NKT cells in AAA tissue. With their growing importance in autoimmunity and transplantation, they may play a role in AAA development. Therefore, there is a need to use a combination of T and NK markers to fully characterize both innate and adaptive lymphoid cell subsets in local inflammatory infiltrates in order to elucidate their roles in AAA progression.  相似文献   
996.
Glucocorticoid hormones stimulate adherens and tight junction formation in Con8 mammary epithelial tumor cells through a multistep process in which the membrane organization of structural apical junction proteins and tight junction sealing is controlled by specific signal transduction components. We have previously shown that dexamethasone stimulation of apical junction formation requires down-regulation of the small GTPase RhoA. Here we identified Rnd3/RhoE, a GTPase-deficient Rho family member and RhoA antagonist, as a key regulator of apical junction dynamics. Exogenously expressed Rnd3/RhoE co-localized with actin at the cell periphery and induced the localization of the adherens junction protein beta-catenin and the tight junction protein ZO-1 to sites of cell-cell contact, and led to the formation of highly sealed tight junctions. Treatment with glucocorticoids was not required to achieve complete apical junction remodeling. Consistent with Rnd3/RhoE acting as an antagonist of RhoA, expression of Rnd3/RhoE rescued the disruptive effects of constitutively active RhoA on apical junction organization. Our results demonstrate a new role for the Rho family member Rnd3/RhoE in regulating the assembly of the apical junction complex and tight junction sealing.  相似文献   
997.
A life-like virtual cell membrane using discrete automata   总被引:1,自引:0,他引:1  
A framework is presented that captures the discrete and probabilistic nature of molecular transport and reaction kinetics found in a living cell as well as formally representing the spatial distribution of these phenomena. This particle or agent-based approach is computationally robust and complements established methods. Namely it provides a higher level of spatial resolution than formulations based on ordinary differential equations (ODE) while offering significant advantages in computational efficiency over molecular dynamics (MD). Using this framework, a model cell membrane has been constructed with discrete particle agents that respond to local component interactions that resemble flocking or herding behavioural cues in animals. Results from simulation experiments are presented where this model cell exhibits many of the characteristic behaviours associated with its biological counterpart such as lateral diffusion, response to osmotic pressure gradients, membrane growth and cell division. Lateral diffusion rates and estimates for the membrane modulus of elasticity derived from these simple experiments fall well within a biologically relevant range of values. More importantly, these estimates were obtained by applying a simple qualitative tuning of the model membrane. Membrane growth was simulated by injecting precursor molecules into the proto-cell at different rates and produced a variety of morphologies ranging from a single large cell to a cluster of cells. The computational scalability of this methodology has been tested and results from benchmarking experiments indicate that real-time simulation of a complete bacterial cell will be possible within 10 years.  相似文献   
998.
Advances in research on globus pallidus (GP) suggest that this 'long thought to be' relay in the 'indirect pathway' plays a unique and critical role in basal ganglia function. The traditional idea of parallel processing within the basal ganglia is also challenged by recent findings. It is now clear that axons of GP neurons form large, perisomatic baskets around target neurons in all major basal ganglia nuclei, thereby exerting a profound influence on the output of the entire basal ganglia. GP neurons are autonomously active both in vivo and in vitro. It is believed that temporal information carried along the corticostriatopallidal pathway is critical for proper motor execution. The importance of appropriately controlled discharge of GP neurons is highlighted by psychomotor disorders such as Parkinson's disease, in which alterations in the pattern and synchrony of discharge in GP neurons are thought to contribute to motor symptoms. Several lines of evidence suggest that the aberrant activity of GP neurons following dopamine depletion is caused by alteration in the synaptic input from both striatum and subthalamic nucleus. In normal subjects, the capability of striatal input in translating cortical input into precisely timed responses in GP neurons is mediated by (1) the expression of postsynaptic GABA(A) receptor composed of subunits with fast kinetic properties; (2) an effective GABA reuptake system in terminating the action of synaptically released GABA, and (3) the existence of dendritic HCN channels that actively abbreviate the time course of the inhibitory postsynaptic potentials and reset rhythmic discharge. Despite the rapid pace in uncovering the elements that shape the activity along the striatopallidosubthalamic pathway, the origin of rhythmic, synchronized bursting of GP neurons seen in parkinsonism has not been fully established experimentally. Further elucidation of the factors that control the information transfer in the striatopallidal synapses is thus critical to our understanding of basal ganglia function and establishing treatment for Parkinson's disease and other basal ganglia disorders.  相似文献   
999.
1000.

Background  

Apoptosis is a common and essential aspect of development. It is particularly prevalent in the central nervous system and during remodelling processes such as formation of the digits and in amphibian metamorphosis. Apoptosis, which is dependent upon a balance between pro- and anti-apoptotic factors, also enables the embryo to rid itself of cells damaged by gamma irradiation. In this study, the roles of the anti-apoptotic factor Bcl-xL in protecting cells from apoptosis were examined in Xenopus laevis embryos using transgenesis to overexpress the XR11 gene, which encodes Bcl-xL. The effects on developmental, thyroid hormone-induced and γ-radiation-induced apoptosis in embryos were examined in these transgenic animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号