首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   30篇
  2023年   5篇
  2022年   2篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   9篇
  2013年   12篇
  2012年   20篇
  2011年   21篇
  2010年   13篇
  2009年   6篇
  2008年   17篇
  2007年   18篇
  2006年   14篇
  2005年   18篇
  2004年   13篇
  2003年   19篇
  2002年   13篇
  2001年   14篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   7篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1969年   2篇
  1911年   1篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
81.
While the normal microbiota has been implicated as a critical defense against invading pathogens, the impact of enteropathogenic infection and host inflammation on intestinal microbial communities has not been elucidated. Using mouse models of Citrobacter rodentium, which closely mimics human diarrheal pathogens inducing host intestinal inflammation, and Campylobacter jejuni infection, as well as chemically and genetically induced models of intestinal inflammation, we demonstrate that host-mediated inflammation in response to an infecting agent, a chemical trigger, or genetic predisposition markedly alters the colonic microbial community. While eliminating a subset of indigenous microbiota, host-mediated inflammation supported the growth of either the resident or introduced aerobic bacteria, particularly of the Enterobacteriaceae family. Further, assault by an enteropathogen and host-mediated inflammation combined to significantly reduce the total numbers of resident colonic bacteria. These findings underscore the importance of intestinal microbial ecosystems in infectious colitis and noninfectious intestinal inflammatory conditions,such as inflammatory bowel disease.  相似文献   
82.
While 18 putative RNA helicases are involved in ribosome biogenesis in Saccharomyces cerevisiae, their enzymatic properties have remained largely biochemically uncharacterized. To better understand their function, we examined the enzymatic properties of Dpb8, a DExD/H box protein previously shown to be required for the synthesis of the 18S rRNA. As expected for an RNA helicase, we demonstrate that recombinant Dbp8 has ATPase activity in vitro, and that this activity is dependent on an intact ATPase domain. Strikingly, we identify Esf2, a nucleolar putative RNA binding protein, as a binding partner for Dbp8, and show that it enhances Dbp8 ATPase activity by decreasing the KM for ATP. Thus, we have uncovered Esf2 as the first example of a protein co-factor that has a stimulatory effect on a nucleolar RNA helicase. We show that Esf2 can bind to pre-rRNAs and speculate that it may function to bring Dbp8 to the pre-rRNA, thereby both regulating its enzymatic activity and guiding Dbp8 to its site of action.  相似文献   
83.
The maternally inherited bacterium Wolbachia pipientis imposes significant fitness costs on its hosts. One such cost is decreased sperm production resulting in reduced fertility of male Drosophila simulans infected with cytoplasmic incompatibility (CI) inducing Wolbachia. We tested the hypothesis that Wolbachia infection affects sperm competitive ability and found that Wolbachia infection is indeed associated with reduced success in sperm competition in non-virgin males. In the second male role, infected males sired 71% of the offspring whereas uninfected males sired 82% of offspring. This is the first empirical evidence indicating that Wolbachia infection deleteriously affects sperm competition and raises the possibility that polyandrous females can utilize differential sperm competitive ability to bias the paternity of broods and avoid the selfish manipulations of Wolbachia. This suggests a relationship between Wolbachia infection and host reproductive strategies. These findings also have important consequences for Wolbachia population dynamics because the transmission advantage of Wolbachia is likely to be undermined by sperm competition.  相似文献   
84.
The ESX-1 secretion system of Mycobacterium tuberculosis delivers bacterial virulence factors to host cells during infection. The most abundant factor, the ESAT-6/CFP-10 dimer, is targeted for secretion via a C-terminal signal sequence on CFP-10 that is recognized by the cytosolic ATPase, Rv3871. However, the selection determinants for other ESX-1 substrates appear to be more complex. Some substrates, such as ESAT-6, are secreted despite lacking signal sequences. Furthermore, all substrates require targeting of the other ESX-1 secreted proteins, a distinguishing feature of this system. How ESX-1 substrates are selected and the basis for co-dependent secretion is unknown. Here we show that the EspC substrate interacts with Rv3868, a cytosolic AAA ATPase, through its C-terminus. Swapping the C-termini of EspC and CFP-10 revealed that these signals are functionally distinct, suggesting that the proteins are targeted via interactions with different ATPases. Surprisingly, biochemical purification experiments demonstrate that these substrates and ATPases form multi-protein complexes inside the cell and identified a new secreted substrate. By interfering with this protein interaction network, we have partially uncoupled co-dependent substrate secretion. Our results suggest that proper functioning of the ESX-1 pathway requires the interaction of multiple ESX-1 substrates and components prior to their secretion. Ultimately, understanding the details of ESX-1 targeting may allow for engineering of better vaccines to prevent tuberculosis.  相似文献   
85.

Background

Generation of robust cell-mediated immune responses at mucosal surfaces while reducing overall inflammation is a primary goal for vaccination. Here we report the use of a recombinant nanoparticle as a vaccine delivery platform against mucosal infections requiring T cell-mediated immunity for eradication.

Methodology/Principal Findings

We encapsulated an immunogenic protein, the major outer membrane protein (MOMP) of Chlamydia muridarum, within hollow, vault nanocapsules (MOMP-vaults) that were engineered to bind IgG for enhanced immunity. Intranasal immunization (i.n) with MOMP-vaults induced anti-chlamydial immunity plus significantly attenuated bacterial burden following challenge infection. Vault immunization induced anti-chlamydial immune responses and inflammasome formation but did not activate toll-like receptors. Moreover, MOMP-vault immunization enhanced microbial eradication without the inflammation usually associated with adjuvants.

Conclusions/Significance

Vault nanoparticles containing immunogenic proteins delivered to the respiratory tract by the i.n. route can act as “smart adjuvants” for inducing protective immunity at distant mucosal surfaces while avoiding destructive inflammation.  相似文献   
86.
Alien aquatic plant species have had spectacular success in invading New Zealand’s freshwaters. Their continued introduction has resulted in few water bodies retaining their natural or original indigenous aquatic vegetation, and associated adverse changes, such as reduced biodiversity and amenity values are well known. This highlights the need to accurately assess aquatic plant species that are already in the country and those outside for their potential to have a negative impact on New Zealand’s lakes and waterways. The study presented in this paper describes an approach to evaluating the invasive weed potential of Hydrilla verticillata (L.f.) Royle compared with Elodea canadensis Michx. under flowing water conditions. The two species were planted in combination and alone, and in a sheltered or exposed position relative to the direction of the water flow. Over the 2-year study, two different waterflow rates were used (0.1 and 0.2 m/s) which represented the gauged flows from a stream of interest that contains E. canadensis and flows from a H. verticillata infested lake. H. verticillata was competitive compared with E. canadensis and able to persist and thrive in the presence of E. canadensis in both exposed and sheltered habitats. These results corroborate observations from other countries of H. verticillata growing in flowing waters and highlight the significant threat posed by H. verticillata to streams and waterways in New Zealand.  相似文献   
87.
In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites.  相似文献   
88.
In the biopharmaceutical industry, recombinant protein drugs are commonly produced in Chinese hamster ovary (CHO) cells. During the development process, removal of CHO cell-derived proteins from the biopharmaceutical product is monitored using multi-product immunoassays. Such immunoassays are developed by raising antibodies to a single CHO cell protein preparation. However, these assays are utilized to monitor CHO cell protein impurities during the recovery of products from different CHO cell lines. To address whether underlying differences between CHO cell lines result in sufficient protein expression changes to exclude the suitability of multi-product immunoassays, a comparative proteomics study of three independently generated CHO cell lines was performed. Statistical analysis of over 1000 proteins resolved by 2-D PAGE demonstrated that the protein expression profiles of three different CHO cell lines exhibit very few differences in protein expression. Only 11 qualitative changes in protein expression and 26 quantitative changes greater than two-fold were observed. Identification of protein spots by mass spectrometry revealed that many of the observed changes were due to post-translational modifications rather than expression of novel proteins in each cell line. These results suggest that multi-product immunoassays are suitable for monitoring host cell proteins in biopharmaceuticals produced in different CHO cell lines.  相似文献   
89.
Archaeal box C/D sRNAs guide the methylation of specific nucleotides in archaeal ribosomal and tRNAs. Three Methanocaldococcus jannaschii sRNP core proteins (ribosomal protein L7, Nop56/58, and fibrillarin) bind the box C/D sRNAs to assemble the sRNP complex, and these core proteins are essential for nucleotide methylation. A distinguishing feature of the Nop56/58 core protein is the coiled-coil domain, established by alpha-helices 4 and 5, that facilitates Nop56/58 self-dimerization in vitro. The function of this coiled-coil domain has been assessed for box C/D sRNP assembly, sRNP structure, and sRNP-guided nucleotide methylation by mutating or deleting this protein domain. Protein pull-down experiments demonstrated that Nop56/58 self-dimerization and Nop56/58 dimerization with the core protein fibrillarin are mutually exclusive protein:protein interactions. Disruption of Nop56/58 homodimerization by alteration of specific amino acids or deletion of the entire coiled-coil domain had no obvious effect upon core protein binding and sRNP assembly. Site-directed mutation of the Nop56/58 homodimerization domain also had no apparent effect upon either box C/D RNP- or C'/D' RNP-guided nucleotide modification. However, deletion of this domain disrupted guided methylation from both RNP complexes. Nuclease probing of the sRNP assembled with Nop56/58 proteins mutated in the coiled-coil domain indicated that while functional complexes were assembled, box C/D and C'/D' RNPs were altered in structure. Collectively, these experiments revealed that the self-dimerization of the Nop56/58 coiled-coil domain is not required for assembly of a functional sRNP, but the coiled-coil domain is important for the establishment of wild-type box C/D and C'/D' RNP structure essential for nucleotide methylation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号