首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4433篇
  免费   333篇
  国内免费   1篇
  2023年   24篇
  2022年   40篇
  2021年   103篇
  2020年   82篇
  2019年   81篇
  2018年   120篇
  2017年   63篇
  2016年   145篇
  2015年   231篇
  2014年   264篇
  2013年   314篇
  2012年   427篇
  2011年   331篇
  2010年   218篇
  2009年   226篇
  2008年   249篇
  2007年   225篇
  2006年   249篇
  2005年   219篇
  2004年   218篇
  2003年   193篇
  2002年   193篇
  2001年   60篇
  2000年   47篇
  1999年   39篇
  1998年   57篇
  1997年   48篇
  1996年   42篇
  1995年   39篇
  1994年   24篇
  1993年   25篇
  1992年   26篇
  1991年   27篇
  1990年   13篇
  1989年   8篇
  1988年   11篇
  1987年   12篇
  1986年   7篇
  1985年   5篇
  1984年   8篇
  1982年   8篇
  1981年   8篇
  1980年   4篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1970年   2篇
排序方式: 共有4767条查询结果,搜索用时 31 毫秒
161.
162.
163.
164.
Congenital stationary night blindness (CSNB) is an inherited and non‐progressive retinal dysfunction. Here, we present the crystal structure of CSNB‐causing T94I2.61 rhodopsin in the active conformation at 2.3 Å resolution. The introduced hydrophobic side chain prolongs the lifetime of the G protein activating metarhodopsin‐II state by establishing a direct van der Waals contact with K2967.43, the site of retinal attachment. This is in stark contrast to the light‐activated state of the CSNB‐causing G90D2.57 mutation, where the charged mutation forms a salt bridge with K2967.43. To find the common denominator between these two functional modifications, we combined our structural data with a kinetic biochemical analysis and molecular dynamics simulations. Our results indicate that both the charged G90D2.57 and the hydrophobic T94I2.61 mutation alter the dark state by weakening the interaction between the Schiff base (SB) and its counterion E1133.28. We propose that this interference with the tight regulation of the dim light photoreceptor rhodopsin increases background noise in the visual system and causes the loss of night vision characteristic for CSNB patients.  相似文献   
165.
We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered a G2/M growth arrest in Gdap1-null cells undergoing reprogramming. High-Content analysis showed that this growth arrest was DNA damage-independent. We propose that lack of efficient mitochondrial fission impairs cell reprogramming by interfering with cell cycle progression in a DNA damage-independent manner.  相似文献   
166.
Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome, but not all patients with this syndrome develop multiple sclerosis over time, and currently, there is no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop clinically defined multiple sclerosis. Here, we took advantage of the capabilities of targeted mass spectrometry to establish a diagnostic molecular classifier with high sensitivity and specificity able to differentiate between clinically isolated syndrome patients with a high and a low risk of developing multiple sclerosis. Based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase in cerebrospinal fluid, we built a statistical model able to assign to each patient a precise probability of conversion to clinically defined multiple sclerosis. Our results are of special relevance for patients affected by multiple sclerosis as early treatment can prevent brain damage and slow down the disease progression.Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system, and although the etiology of the disease is not fully understood, it is probably caused by the interaction of a complex genetic architecture and environmental factors. Multiple sclerosis affects over 2 million people worldwide, and it is typically diagnosed between ages 20 and 40, thus making a significant impact on public health and its economy (1).In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome. However, not all patients with this syndrome develop multiple sclerosis over time (2), and currently, the magnetic resonance imaging (MRI) abnormalities and the presence of IgG oligoclonal bands in cerebrospinal fluid (CSF) are used as predictors for later conversion to clinically definite multiple sclerosis (CDMS)1 (35). Although such abnormalities are considered important factors that influence the likelihood of developing CDMS, there is currently no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop CDMS.The lack of diagnostic and prognostic biomarkers is a common problem for many diseases lacking a complete etiology, which is the case for most neurological disorders related to the central nervous system such as Parkinson''s and Alzheimer''s diseases, schizophrenia, and multiple sclerosis. In the particular case of multiple sclerosis, early treatment of patients with a clinically isolated syndrome can prevent brain damage and slow down the disease progression (6). Therefore, the availability of a diagnostic test in the initial stages of the disease is not only desirable but also of extreme relevance to attenuate the degenerative effects of the disease.Biomarker validation has traditionally been dominated by enzyme linked immuno-sorbent assays (ELISA), but recent advances in proteomics techniques have enabled the measurement of a subset of selected proteins over a large dynamic concentration range in multiple samples. Targeted mass spectrometry has thus become the method of choice when quantifying simultaneously a panel of proteins across many different biological samples (79). In particular, selected reaction monitoring (SRM) is the gold standard targeted mass spectrometry method for protein quantification due to its high precision, reliability, and throughput (1013). This targeted mass spectrometry method is performed on triple quadrupole instruments, in which a predefined peptide precursor ion is first isolated, and then selected fragment ions arising from its collisional dissociation are measured over time. Each pair of precursor and fragment ion is called a transition, and multiple transitions can be coordinately measured and used to conclusively identify and quantify a peptide in a clinical complex sample.In a previous study, we used a screening mass spectrometric approach to discover potential markers for multiple sclerosis conversion in patients that initially presented a clinical isolated syndrome (14). In that discovery phase, quantitative mass spectrometry with iTRAQ labeling was used to measure protein abundances in pooled CSF samples from patients presenting a clinical isolated syndrome that either remained normal (CIS) or had eventually converted to clinically definite multiple sclerosis (CDMS) (n = 60). In the initial screening, several proteins exhibited significant differences in abundance when comparing these two groups of patients. The abundance change in one of the altered proteins, chitinase 3-like 1 (CH3L1), was confirmed by ELISA in CSF of individual patients, whereas for others, such as semaphorin 7A (SEM7A) and ala-β-his-dipeptidase (CNDP1), their abundance changes were confirmed by targeted mass spectrometry in follow-up studies with independent cohorts (15). Moreover, the levels of CH3L1 were associated with brain MRI abnormalities and disability progression during the follow-up period, as well as with shorter time to conversion to clinically definite multiple sclerosis (14).We now set out to establish a diagnostic protein classifier with high sensitivity and specificity able to differentiate between patients with a clinically isolated syndrome that have either a high or a low risk of developing clinically definite multiple sclerosis over time. For this purpose, CSF samples from an independent patient cohort from the one used in the discovery study were collected, and a set of preselected protein biomarker candidates were systematically quantified by targeted mass spectrometry (SRM) and evaluated for their classification power. Out of this study, we established a protein classifier based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase, which is able to differentiate with high sensitivity and specificity between patients with a clinically isolated syndrome that have either a high or low risk of developing clinically definite multiple sclerosis. Moreover, the statistical model built around this protein classifier enables clinicians to easily assign to each patient a precise probability of conversion to clinically definite multiple sclerosis (Fig. 1).Open in a separate windowFig. 1.General workflow used in the present study. Initially, protein candidates identified in our previous discovery studies—together with several proteins described by other groups—were selected and quantified by targeted mass spectrometry (SRM) in a relatively large cohort individual patients. Protein quantities were then evaluated by their capability of classifying patients with clinical isolated syndrome, and thus, the best prognostic protein combination was identified.  相似文献   
167.
168.
Bearded seal (Erignathus barbatus) calls were recorded using autonomous passive acoustic recorders deployed in the northeastern Chukchi Sea between October 2007 and October 2010. Continuous acoustic data were acquired during summer (August to mid‐October), and overwinter data (mid‐October through July) were acquired on a duty cycle of 40/48 min every 4 h. We investigated the spatio‐temporal distribution and acoustic behavior of vocalizing bearded seals in this multiyear data set. Peaks in calling occurred in spring, coinciding with the mating period, and calls stopped abruptly in late June/early July. Fewer calls were detected in summer, and the vocal presence of seals increased with the formation of pack ice in winter. Vocal activity was higher at night than during the day, with a peak around 0400 (AKST). Monthly patterns in proportional use of each call type and call duration were examined for the first time. The proportion and duration of AL1(T) and AL2(T) call types increased during the mating period, suggesting that males advertise their breeding condition by producing those specific longer trills. The observed seasonal and diel trends were consistent between years. These results improve our understanding of occurrence and acoustic behavior of bearded seals across the northeastern Chukchi Sea.  相似文献   
169.
A headspace solid‐phase microextraction (HS‐SPME) method combined with gas chromatography‐mass spectrometry (GC/MS) was developed and optimized for the extraction and the analysis of volatile organic compounds (VOCs) from lavandin and fine lavender roots. Optimal parameters to extract volatile molecules from ground and intact roots were determined using a divinylbenzene‐carboxen‐polydimethylsiloxane (DVB/CAR/PDMS) coating fiber at 70 °C for 60 min. A total of 99 VOCs, including 40 monoterpenoids, 15 sesquiterpenoids, 1 diterpenoid and 2 coumarins were detected. The main compounds detected in lavandin roots were fenchol, borneol, and coumarin. Performances of the optimized SPME GC/MS method were evaluated via the comparison of VOC emissions between roots from different cultivars of fine lavender (7713 and maillette) and lavandin (abrial and grosso). Chemometric analysis, using partial least squares‐discriminant analysis (PLS‐DA), suggests fifteen significant features as potential discriminatory compounds. Among them, β‐phellandrene allows discrimination between lavender and lavandin varieties.  相似文献   
170.
Traditional Mediterranean diet includes the halophyte Crithmum maritimum L. (Apiaceae) which can be found in the coastline of the Balearic Islands but also inland. Both areas differed in the environmental conditions, mainly in salinity which can affect the oxidative status of this species. The aim was to evaluate the antioxidant enzyme activities, polyphenols and the lipid peroxidation in leaves of wild C. maritimum growing in a natural coastal area influenced by marine salinity and an inland area without marine influence. The activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase as well as polyphenol and reduced glutathione content were significantly higher in the samples from coastline population, whereas no significant differences were found in glutathione reductase activity and in malondialdehyde levels. The production of H2O2 was also significantly higher in the population from coastline. In conclusion, C. maritimum adapt their antioxidant defense machinery to the different salinity conditions, avoiding the instauration of oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号