首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1345篇
  免费   142篇
  2022年   10篇
  2021年   11篇
  2020年   16篇
  2019年   13篇
  2018年   13篇
  2017年   26篇
  2016年   26篇
  2015年   45篇
  2014年   41篇
  2013年   50篇
  2012年   70篇
  2011年   66篇
  2010年   40篇
  2009年   33篇
  2008年   45篇
  2007年   31篇
  2006年   47篇
  2005年   40篇
  2004年   46篇
  2003年   45篇
  2002年   35篇
  2001年   60篇
  2000年   50篇
  1999年   35篇
  1998年   11篇
  1996年   22篇
  1995年   14篇
  1994年   18篇
  1993年   11篇
  1992年   26篇
  1991年   31篇
  1990年   29篇
  1989年   27篇
  1988年   27篇
  1987年   34篇
  1986年   20篇
  1985年   21篇
  1984年   25篇
  1983年   14篇
  1982年   15篇
  1981年   14篇
  1979年   17篇
  1978年   17篇
  1977年   19篇
  1975年   12篇
  1974年   9篇
  1973年   14篇
  1971年   10篇
  1967年   10篇
  1966年   10篇
排序方式: 共有1487条查询结果,搜索用时 93 毫秒
101.
DNA double strand breaks (DSBs) are potentially serious chromosomal lesions. However, cells sometimes deliberately cleave their own DNA to facilitate certain chromosomal processes, and there is much interest in how such self-inflicted breaks are effectively managed. Eukaryotic DSBs occur in the context of chromatin and the RSC chromatin-remodeling ATPase complex has been shown to promote DSB repair at the budding yeast MAT locus DSB, created by the HO endonuclease during mating type switching. We show that the role of RSC at MAT is highly specialized. The Rsc1p subunit of RSC directs nucleosome sliding immediately after DSB creation at both MAT and generally and is required for efficient DNA damage-induced histone H2A phosphorylation and strand resection during repair by homologous recombination. However, the Rsc2p and Rsc7p subunits are additionally required to set up a basal MAT locus structure. This RSC-dependent chromatin structure at MAT ensures accessibility to the HO endonuclease. The RSC complex therefore has chromatin remodeling roles both before and after DSB induction at MAT, promoting both DNA cleavage and subsequent repair.  相似文献   
102.
Zipper-interacting protein kinase (ZIPK) regulates Ca(2+)-independent phosphorylation of both smooth muscle (to regulate contraction) and non-muscle myosin (to regulate non-apoptotic cell death) through either phosphorylation and inhibition of myosin phosphatase, the myosin phosphatase inhibitor CPI17, or direct phosphorylation of myosin light chain. ZIPK is regulated by multisite phosphorylation. Phosphorylation at least three sites Thr-180, Thr-225, and Thr-265 has been shown to be essential for full activity, whereas phosphorylation at Thr-299 regulates its intracellular localization. Herein we utilized an unbiased proteomics screen of smooth muscle extracts with synthetic peptides derived from the sequence of the regulatory phosphorylation sites of the enzyme to identify the protein kinases that might regulate ZIPK activity in vivo. Discrete kinase activities toward Thr-265 and Thr-299 were defined and identified by mass spectrometry as Rho kinase 1 (ROCK1). In vitro, ROCK1 showed a high degree of substrate specificity toward native ZIPK, both stoichiometrically phosphorylating the enzyme at Thr-265 and Thr-299 as well as bringing about activation. In HeLa cells, coexpression of ZIPK with ROCK1 altered the ROCK-induced phenotype of focused stress fiber pattern to a Rho-like phenotype of parallel stress fiber pattern. This effect was also dependent upon phosphorylation at Thr-265. Our findings provide a new regulatory pathway in smooth muscle and non-muscle cells whereby ROCK1 phosphorylates and regulates ZIP kinase.  相似文献   
103.
A systematic, comprehensive strategy that optimizes sample preparation and chromatography to minimize matrix effects in bioanalytical LC/MS/MS assays was developed. Comparisons were made among several sample preparation methods, including protein precipitation (PPT), liquid-liquid extraction (LLE), pure cation exchange solid-phase extraction (SPE), reversed-phase SPE and mixed-mode SPE. The influence of mobile phase pH and gradient duration on the selectivity and sensitivity for both matrix components and basic analytes was investigated. Matrix effects and overall sensitivity and resolution between UPLC technology and HPLC were compared. The amount of specific matrix components, or class of matrix components, was measured in the sample preparation extracts by LC/MS/MS with electrospray ionization (ESI) using both precursor ion scanning mode and multiple reaction monitoring (MRM). PPT is the least effective sample preparation technique, often resulting in significant matrix effects due to the presence of many residual matrix components. Reversed-phase and pure cation exchange SPE methods resulted in cleaner extracts and reduced matrix effects compared to PPT. The cleanest extracts, however, were produced with polymeric mixed-mode SPE (both reversed-phase and ion exchange retention mechanisms). These mixed-mode sorbents dramatically reduced the levels of residual matrix components from biological samples, leading to significant reduction in matrix effects. LLE also provided clean final extracts. However, analyte recovery, particularly for polar analytes, was very low. Mobile phase pH was manipulated to alter the retention of basic compounds relative to phospholipids, whose retention tends to be relatively independent of pH. In addition to the expected resolution, speed and sensitivity benefits of UPLC technology, a paired t-test demonstrated a statistically significant improvement with respect to matrix effects when this technology was chosen over traditional HPLC. The combination of polymeric mixed-mode SPE, the appropriate mobile phase pH and UPLC technology provides significant advantages for reducing matrix effects resulting from plasma matrix components and in improving the ruggedness and sensitivity of bioanalytical methods.  相似文献   
104.
105.
106.
107.
Aliesterases (carboxylesterases) are serine esterases that can serve a protective role for the target acetylcholinesterase (AChE) during organophosphorus insecticide intoxication because the former esterases are alternate phosphorylation sites. The levels of aliesterase activity in liver and plasma and AChE activity in brain regions were investigated after the intravenous administration of paraoxon (P = O) into female rats. The rats were pretreated intraperitoneally with β-naphthoflavone (BNF), which decreases hepatic aliesterase activity following a 3 day in vivo treatment, and/or tri-o-totyl phosphate (TOTP) to inhibit aliesterases. The liver aliesterases were inhibited less by P = O in BNF-treated rats than in control rats, which suggests that either BNF exposure may have resulted in aliesterases that are less sensitive to P = O inhibition or BNF may have altered P = O's availability. The BNF treatment did not seem to alter the degree of inhibition of the brain AChE activity following the low dosage of paraoxon (0.04 mg/kg). However, the brain AChE activity in the P = O/TOTP/BNF-treated rats was lower than that in the P = O/TOTP-treated rats, suggesting that BNF also caused changes in systems affecting the disposition of P = O in addition to the changes in the hepatic aliesterases. At the high dosage of paraoxon (0.12 mg/kg), the AChE and aliesterase activities showed a pattern similar to that of the low dosage. This suggests that the aliesterases, as altered by BNF exposure, even when nearly completely inhibited, did not alter the response of the target enzyme, AChE, and, therefore, the magnitude of the toxic response. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 263–268, 1997.  相似文献   
108.
109.
110.
In the bacterial type II fatty acid synthase system, beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) catalyzes the condensation of acetyl-CoA with malonyl-ACP. We have identified, expressed, and characterized the Streptococcus pneumoniae homologue of Escherichia coli FabH. S. pneumoniae FabH is approximately 41, 39, and 38% identical in amino acid sequence to Bacillus subtilis, E. coli, and Hemophilus influenzae FabH, respectively. The His-Asn-Cys catalytic triad present in other FabH molecules is conserved in S. pneumoniae FabH. The apparent K(m) values for acetyl-CoA and malonyl-ACP were determined to be 40.3 and 18.6 microm, respectively. Purified S. pneumoniae FabH preferentially utilized straight short-chain CoA primers. Similar to E. coli FabH, S. pneumoniae FabH was weakly inhibited by thiolactomycin. In contrast, inhibition of S. pneumoniae FabH by the newly developed compound SB418011 was very potent, with an IC(50) value of 0.016 microm. SB418011 also inhibited E. coli and H. influenzae FabH with IC(50) values of 1.2 and 0.59 microm, respectively. The availability of purified and characterized S. pneumoniae FabH will greatly aid in structural studies of this class of essential bacterial enzymes and facilitate the identification of small molecule inhibitors of type II fatty acid synthase with the potential to be novel and potent antibacterial agents active against pathogenic bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号