首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  104篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   14篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
11.
Heme proteins, metmyoglobin, methemoglobin, and metcytochrome c showed unusual affinity for double-stranded DNA. Calorimetric studies show that binding of methemoglobin to calf thymus DNA (CTDNA) is weakly endothermic, and the binding constant is 4.9+/-0.7x10(5) M(-1). The Soret absorption bands of the heme proteins remained unchanged, in the presence of excess CTDNA, but a new circular dichroic band appeared at 210 nm. Helix melting studies indicated that the protein-DNA mixture denatures at a lower temperature than the individual components. Thermograms obtained by differential scanning calorimetry of the mixture indicated two distinct transitions, which are comparable to the thermograms obtained for individual components, but there was a reduction in the excess heat capacity. Activation of heme proteins by hydrogen peroxide resulted in the formation of high valent Fe(IV) oxo intermediates, and CTDNA reacted rapidly under these conditions. The rate was first-order in DNA concentration, and this reactivity resulted in DNA strand cleavage. Upon activation with hydrogen peroxide, for example, the heme proteins converted the supercoiled pUC18 DNA into nicked circular and linear DNA. No reaction occurred in the absence of the heme protein, or hydrogen peroxide. These data clearly indicate a novel property of several heme proteins, and this is first report of the endonuclease-like activity of the heme proteins.  相似文献   
12.
The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have uncovered that growth factors binding to RTKs lead to activation of a non-receptor tyrosine kinase, Ack1 (also known as ACK or TNK2), which directly phosphorylates AKT at an evolutionarily conserved tyrosine 176 in the kinase domain. Tyr176-phosphorylated AKT localizes to the plasma membrane and promotes Thr308/Ser473-phosphorylation leading to AKT activation. Mice expressing activated Ack1 specifically in the prostate exhibit AKT Tyr176-phosphorylation and develop murine prostatic intraepithelial neoplasia (mPINs). Further, expression levels of Tyr176-phosphorylated-AKT and Tyr284-phosphorylated-Ack1 were positively correlated with the severity of disease progression, and inversely correlated with the survival of breast cancer patients. Thus, RTK/Ack1/AKT pathway provides a novel target for drug discovery.  相似文献   
13.
14.
15.
Moloney murine leukemia virus (MoMLV) Gag utilizes its late (L) domain motif PPPY to bind members of the Nedd4-like ubiquitin ligase family. These interactions recruit components of the cell''s budding machinery that are critical for virus release. MoMLV Gag contains two additional L domains, PSAP and LYPAL, that are believed to drive residual MoMLV release via interactions with cellular proteins Tsg101 and Alix, respectively. We found that overexpression of Tsg101 or Alix failed to rescue the release of PPPY-deficient MoMLV via these other L domains. However, low-level expression of the ubiquitin ligase Itch potently rescued the release and infectivity of MoMLV lacking PPPY function. In contrast, other ubiquitin ligases such as WWP1, Nedd4.1, Nedd4.2, and Nedd4.2s did not rescue this release-deficient virus. Efficient rescue required the ubiquitin ligase activity of Itch and an intact C2 domain but not presence of the endophilin-binding site. Additionally, we found Itch to immunoprecipitate with MoMLV Gag lacking the PPPY motif and to be incorporated into rescued MoMLV particles. The PSAP and LYPAL motifs were dispensable for Itch-mediated virus rescue, and their absence did not affect the incorporation of Itch into the rescued particles. Itch-mediated rescue of release-defective MoMLV was sensitive to inhibition by dominant-negative versions of ESCRT-III components and the VPS4 AAA ATPase, indicating that Itch-mediated correction of MoMLV release defects requires the integrity of the host vacuolar sorting protein pathway. RNA interference knockdown of Itch suppressed the residual release of the MoMLV lacking the PPPY motif. Interestingly, Itch stimulation of the PPPY-deficient MoMLV release was accompanied by the enhancement of Gag ubiquitination and the appearance of new ubiquitinated Gag proteins in virions. Together, these results suggest that Itch can facilitate MoMLV release in an L domain-independent manner via a mechanism that requires the host budding machinery and involves Gag ubiquitination.Retroviruses require access to the host budding machinery to exit the cell (5, 13, 40). To this end, retroviral Gag polyproteins use short sequences called late (L) domains to promote virus release by recruiting members of the host vacuolar protein sorting (vps) machinery. In the cell, vps proteins are involved in membrane dynamics that facilitate the separation of daughter cells at the completion of cytokinesis (9, 39) and the budding of vesicles into endosomal compartments or multivesicular bodies (MVB) (2, 23), a process topologically similar to virus budding (57). Class E vps proteins are organized into three heteromeric endosomal complexes (called endosomal sorting complexes) required for transport, namely, ESCRT-I, -II, and -III (2). In the current model for budding, sequential recruitment of ESCRT components on the cytoplasmic face of the membrane facilitates vesicle invagination into MVB compartments and viral egress from the cell (2). The disassembly of ESCRT-III components is catalyzed by the activity of VPS4 AAA-type ATPase, which in turn is presumed to trigger membrane fission events (3, 50). Any disruption in this sequence, such as mutations in L domain motifs or dominant-negative interference with the function of ESCRT-III members or the VPS4 ATPase, adversely affects virus release. This indicates that Gag interactions with the ESCRT machinery are necessary for virus budding and separation from the cell (19, 21, 34, 49, 57).Currently, three types of L domain motifs have been identified: PT/SAP, LYPXnL, and PPPY. All retroviral Gag molecules contain at least one of these motifs, as multiple L domains are believed to synergistically function to ensure efficient viral release. Moloney murine leukemia virus (MoMLV) Gag carries all three L domain motifs, PSAP, LYPAL, and PPPY, which bind the vps protein Tsg101, the ESCRT-associated protein Alix (46), and members of the Nedd4-ubiquitin ligase family (33), respectively. In HIV-1, the PTAP motif in the p6 region of Gag binds Tsg101 (16, 56), which functions in viral budding (16, 35) as a member of ESCRT-I (16, 36, 57). The LYPXnL motif is also located in p6 and is the binding site for Alix (49, 57), a protein that also interacts with the nucleocapsid domain of HIV-1 Gag (14, 43) and links Gag to components of ESCRT-III (14). Similarly, the human T-cell leukemia virus (HTLV-I) Gag carries PPPY and PTAP L domains, which both contribute to efficient HTLV-1 release (6, 7, 21). The PPPY L domain motif, which is found in numerous retroviral Gag polyproteins (6, 7, 19, 21, 27, 28, 61, 62), plays a critical role in MoMLV release, as mutations disrupting its sequence lead to significant decreases in virus budding and release (33, 62). PSAP and LYPAL, the additional L domain motifs, are believed to serve little to no role in the release of MoMLV Gag virus-like particles (45, 46).The role of Nedd4-like ubiquitin ligases in budding events was initially established by data obtained with the yeast Nedd4-like ligase Rsp5, an enzyme that ubiquitinates surface proteins, thus signaling their incorporation into the MVB pathway (26). From retroviral budding studies, multiple findings support the notion that Nedd4-like ubiquitin ligases link PPPY-containing Gag proteins to the host ESCRT machinery. For example, mutations in the PPPY motif or expression of dominant-negative versions of Nedd4-like ligases resulted in budding defects similar to those seen upon interference with the function of ESCRT-III members (7, 21, 27, 28, 33, 62). Overexpression of Nedd4-like ligases WWP1 and Itch corrected the budding defects of a MoMLV PPPY mutant that retained residual binding to both ligases (33). Also, when transplanted to a heterologous retroviral Gag, the PPPY L domain creates a requirement for Nedd4-like ubiqutin ligase activity to facilitate viral release that is dependent on the presence of a functional ESCRT pathway (63). Collectively, these observations support the notion that Nedd4-like ubiquitin ligases link retroviral Gag polyproteins to components of the ESCRT pathway necessary for budding.Both endosomal and viral budding require the ubiquitin conjugation properties of Nedd4-like ligases, indicating that ubiquitin transfer to a key protein(s) is necessary to promote budding. A role for Gag ubiquitination in viral budding has been suggested (8, 20, 22, 48). In fact, ubiquitin attachment to equine infectious anemia virus (EIAV) Gag can substitute for the lack of L domains and rescue viral budding (25), suggesting that ubiquitin molecules conjugated to Gag can signal the recruitment of the host ESCRT machinery. For feline immunodeficiency virus, efficient budding seems to require L domain-dependent ubiquitination of Gag proteins (8) that is independent of the L domain ability to directly recruit Nedd4-like ubiquitin ligases (i.e., by means of the PT/SAP L domain motif) (8). Similarly, ubiquitination of HTLV-1 Gag was also shown to play a significant role in viral release (22). Conversely, data arguing in favor of a role for the ubiquitination of transacting factors, but not Gag, in the facilitation of viral budding have also been reported (10, 63). Thus Gag polyproteins recruit, in a PPPY-dependent or -independent manner, enzymatically active Nedd4-like ubiquitin ligases that conjugate ubiquitin molecules to Gag or to Gag-binding host factors. Such interactions, whether direct or indirect, are believed to link the viral protein to the host ESCRT pathway and facilitate release.In addition to the well-characterized cellular proteins that bind primary L domain motifs, retroviral Gag can recruit other host factors, either via secondary L domains or independently of L domains (10, 24, 29, 55, 59). These cellular factors are believed to promote virus production by facilitating Gag protein trafficking to the plasma membrane and/or providing additional L domain-independent links to the host vps pathway. Examples of these parallel pathways are illustrated in the rescue of a budding-defective HIV-1 lacking the PTAP domain by overexpression of Alix (15, 54) and in the remarkably potent rescue of HIV-1 lacking all known L domains by the overexpression of Nedd4.2s, a Nedd4.2 isoform that belongs to the Nedd4-like ubiquitin ligase family (10, 55). In this study, we sought to identify host cell factors that rescue budding defects of the MoMLV mutant lacking the PPPY motif (MoMLV AAAY mutant). Our studies provide evidence that Itch overexpression rescued budding and infectivity defects of the MoMLV AAAY mutant virus, indicating that Gag can recruit the ubiquitin ligase Itch in an L domain-independent manner to facilitate MoMLV release via a mechanism that involves Gag ubiquitination.  相似文献   
16.
Pronk  A.A.  De Willigen  P.  Heuvelink  E.  Challa  H. 《Plant and Soil》2002,243(2):161-171
Aboveground dry mass, total root dry mass and root length density of the fine roots of Thuja occidentalis `Brabant' were determined under non- and drip-irrigated field conditions. Two-dimensional diffusion parameters for dynamic root growth were estimated based on dry mass production of the fine roots and the concept of the convective-diffusion model of cylindrical root growth and proliferation. Drip irrigation increased above-ground dry mass and the shoot:root ratio compared with no irrigation. Dry mass of the coarse roots increased as well due to drip irrigation. No effect on total or fine root dry mass was found. Drip irrigation increased root length densities in the top 0.1 m but not significantly. However, drip irrigation decreased root proliferation in depth by 27%, whereas proliferation in the horizontal direction was not altered. Measured root length densities were overestimated by 6–21% by the model (0.68 < R 2 < 0.92).  相似文献   
17.
Lead (Pb2+) is a toxic heavy metal that has adverse effects on the health of humans and other animals. The developing central nervous system is especially sensitive and vulnerable to Pb2+ toxicity. In this study, the effects of low levels of Pb2+ exposure on human SH-SY5Y neuroblastoma cell cultures were assessed. The cells were exposed to Pb2+ (0.01 microM-10 microM) for 48 hrs, and the level of cell proliferation was determined. Pb2+ significantly inhibited the proliferation of neuroblastoma cells in a concentration-dependent manner. A 50% inhibition (IC50) in cellular proliferation was observed with 5 microM Pb2+. A significant decrease in the levels of glutathione (GSH), a critical intracellular antioxidant, was observed at all the lead concentrations. There was also a multifold increase in the activity of caspase-3, a key executioner of apoptosis, and in the levels of prostaglandin E2 (PGE2). Our results suggest that the neurotoxic effects of Pb may be mediated by apoptosis and PGE2 release, which could be potentially detrimental to neuronal survival.  相似文献   
18.
Gas chromatographic and gas chromatographic—mass specrometric analytical techniques were employed to quantitate and confirm levels of circulating organic plasticizers in critically ill surgical patients. Two plasticizers, dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), have been identified. DEHP can be found in many plastic medical devices. The DEHP levels were significant soon after transfusion or in the presence of renal dysfunction. The source of DBP is not clear at present and requires further study. The prevention of this contamination and the toxicity of these plasticizers should be investigated to ensure the safe use of plastic medical devices.  相似文献   
19.
Gliomas remain to be an unresolved medical problem. Better understanding of complex regulation and key molecules involved in glioma pathology are needed for designing new and effective treatment modalities. Activation of mitogen-activated protein kinase/extracellular signal regulated kinase (ERK) pathway is known to be having a critical role in cell proliferation and differentiation during the invasion and metastasis of the tumor cells. In the present study, N-ethyl N-nitrosourea induced glioma rat model was used to understand the role of ERK1/2 and Akt pathways in the progression of tumor malignancy. Twenty-four glioma rat brains of early (P90) and progressive (P180) stages were used for histological and immunoblot analysis. Results have shown increased levels of activated ERK1/2, activated Akt or protein kinase B, Bcl-2 and pBad in the glioma rats. This study may indicate increased cell proliferation and angiogenesis, mediated through activation of both ERK and Akt pathways along with increased levels of pBad. Further, pAkt and Bcl-2 levels in the progressive stage glioma rats may indicate existence of sustained tumor cell survival signals. Moreover, enhanced pBad levels in tumor may indicate that there are anti-apoptotic mechanisms, further making the malignant cells resistant to apoptosis.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号