首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  41篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   8篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
21.
To determine whether there are distinctions in the location and pattern of response between different bronchoprovocations, we performed high-resolution computer-assisted tomography in 10 asthmatic subjects before and after isocapnic hyperventilation of frigid air (HV) and methacholine (Meth). The luminal areas of the trachea, main stem, lobar, and segmental bronchi were computed before and after each provocation and blindly compared. Both stimuli reduced the 1-s forced expiratory volume similarly (percent change in 1-s forced expiratory volume HV = 28.1 +/- 5.5%, Meth = 25.8 +/- 5.2%; P = 0.69) but did so in different fashions. Each provocation was associated with the development of both bronchial narrowing and dilation; however, more airways constricted with HV (67.7%) than with Meth (47.0%; P < 0.001). Furthermore, there was little concordance between either the magnitude or direction of change between stimuli in any region of the lung (r = 0.25). In general, the frequency of narrowing increased with branching. Constriction became more prominent in the lobar regions and increased further in the segmental branches, but a wide range of intensity existed. These data demonstrate that provocational stimuli evoke complex morphometric changes within the tracheobronchial tree and that different agonists produce different patterns. Thermal stimuli chiefly influence the segmental level, whereas the response to Meth develops more distally. Even within this distribution, the same airway does not respond in an identical fashion to different stimuli, so there does not appear to be a uniform trigger zone.  相似文献   
22.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infections with multi-drug resistance needs effective and alternative control strategies. In this study we investigated the adjuvant effect of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid (7,10-EODA) against multidrug-resistant S. aureus (MDRSA) strain 01ST001 by disc diffusion, checker board and time kill assays. Further the membrane targeting action of 7,10-EODA was investigated by spectroscopic and confocal microscopic studies. 7,10-EODA exerted synergistic activity along with β-lactam antibiotics against all clinical MRSA strains, with a mean fractional inhibitory concentration index below 0.5. In time-kill kinetic study, combination of 7,10-EODA with oxacillin, ampicillin, and penicillin resulted in 3.8–4.2 log10 reduction in the viable counts of MDRSA 01ST001. Further, 7,10-EODA dose dependently altered the membrane integrity (p < 0.001) and increased the binding of fluorescent analog of penicillin, Bocillin-FL to the MDRSA cells. The membrane action of 7,10-EODA further facilitated the uptake of several other antibiotics in MDRSA. The results of the present study suggested that 7,10-EODA could be a novel antibiotic adjuvant, especially useful in repurposing β-lactam antibiotics against multidrug-resistant MRSA.  相似文献   
23.
Background Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens.Scope This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species.Conclusions Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields.  相似文献   
24.
MOTIVATION: Serum lipids have been traditionally studied in the context of lipoprotein particles. Today's emerging lipidomics technologies afford sensitive detection of individual lipid molecular species, i.e. to a much greater detail than the scale of lipoproteins. However, such global serum lipidomic profiles do not inherently contain any information on where the detected lipid species are coming from. Since it is too laborious and time consuming to routinely perform serum fractionation and lipidomics analysis on each lipoprotein fraction separately, this presents a challenge for the interpretation of lipidomic profile data. An exciting and medically important new bioinformatics challenge today is therefore how to build on extensive knowledge of lipid metabolism at lipoprotein levels in order to develop better models and bioinformatics tools based on high-dimensional lipidomic data becoming available today. RESULTS: We developed a hierarchical Bayesian regression model to study lipidomic profiles in serum and in different lipoprotein classes. As a background data for the model building, we utilized lipidomic data for each of the lipoprotein fractions from 5 subjects with metabolic syndrome and 12 healthy controls. We clustered the lipid profiles and applied a regression model within each cluster separately. We found that the amount of a lipid in serum can be adequately described by the amounts of lipids in the lipoprotein classes. In addition to improved ability to interpret lipidomic data, we expect that our approach will also facilitate dynamic modelling of lipid metabolism at the individual molecular species level.  相似文献   
25.
Roux-en-Y gastric bypass (RYGB) is an effective method to attain sustained weight loss and diabetes remission. We aimed to elucidate early changes in the plasma metabolome and lipidome after RYGB. Plasma samples from 16 insulin-resistant morbidly obese subjects, of whom 14 had diabetes, were subjected to global metabolomics and lipidomics analysis at pre-surgery and 4 and 42 days after RYGB. Metabolites and lipid species were compared between time points and between subjects who were in remission and not in remission from diabetes 2 years after surgery. We found that the variables that were most discriminatory between time points were decanoic acid and octanoic acid, which were elevated 42 days after surgery, and sphingomyelins (18:1/21:0 and 18:1/23:3), which were at their lowest level 42 days after surgery. Insulin levels were lower at 4 and 42 days after surgery compared with pre-surgery levels. At 4 days after surgery, insulin levels correlated positively with metabolites of branched chain and aromatic amino acid metabolism and negatively with triglycerides with long-chain fatty acids. Of the 14 subjects with diabetes prior to surgery, 7 were in remission 2 years after surgery. The subjects in remission displayed higher pre-surgery levels of tricarboxylic acid cycle intermediates and triglycerides with long-chain fatty acids compared with subjects not in remission. Thus, metabolic alterations are induced soon after surgery and subjects with diabetes remission differ in the metabolic profiles at pre- and early post-surgery time points compared to patients not in remission.  相似文献   
26.
27.
Mice lacking Peroxisome Proliferator-Activated Receptor γ2 (PPARγ2) have unexpectedly normal glucose tolerance and mild insulin resistance. Mice lacking PPARγ2 were found to have elevated levels of Lipocalin prostaglandin D synthase (L-PGDS) expression in BAT and subcutaneous white adipose tissue (WAT). To determine if induction of L-PGDS was compensating for a lack of PPARγ2, we crossed L-PGDS KO mice to PPARγ2 KO mice to generate Double Knock Out mice (DKO). Using DKO mice we demonstrated a requirement of L-PGDS for maintenance of subcutaneous WAT (scWAT) function. In scWAT, DKO mice had reduced expression of thermogenic genes, the de novo lipogenic program and the lipases ATGL and HSL. Despite the reduction in markers of lipolysis in scWAT, DKO mice had a normal metabolic rate and elevated serum FFA levels compared to L-PGDS KO alone. Analysis of intra-abdominal white adipose tissue (epididymal WAT) showed elevated expression of mRNA and protein markers of lipolysis in DKO mice, suggesting that DKO mice may become more reliant on intra-abdominal WAT to supply lipid for oxidation. This switch in depot utilisation from subcutaneous to epididymal white adipose tissue was associated with a worsening of whole organism metabolic function, with DKO mice being glucose intolerant, and having elevated serum triglyceride levels compared to any other genotype. Overall, L-PGDS and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism.  相似文献   
28.
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.  相似文献   
29.
Optimal lipid storage and mobilization are essential for efficient adipose tissue. Nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) regulates adipocyte differentiation and lipid deposition, but its role in lipolysis and dysregulation in obesity is not well defined. This investigation aimed to understand the molecular impact of dysfunctional PPARγ on the lipolytic axis and to explore whether these defects are also confirmed in common forms of human obesity. For this purpose, we used the P465L PPARγ mouse as a model of dysfunctional PPARγ that recapitulates the human pparγ mutation (P467L). We demonstrated that defective PPARγ impairs catecholamine-induced lipolysis. This abnormal lipolytic response is exacerbated by a state of positive energy balance in leptin-deficient ob/ob mice. We identified the protein kinase A (PKA) network as a PPARγ-dependent regulatory node of the lipolytic response. Specifically, defective PPARγ is associated with decreased basal expression of prkaca (PKAcatα) and d-akap1, the lipase genes Pnplaz (ATGL) and Lipe (HSL), and lipid droplet protein genes fsp27 and adrp in vivo and in vitro. Our data indicate that PPARγ is required for activation of the lipolytic regulatory network, dysregulation of which is an important feature of obesity-induced insulin resistance in humans.  相似文献   
30.
Agrobacterium-mediated barley transformation promises many advantages compared to alternative gene transfer methods, but has so far been established in only a few laboratories. We describe a protocol that facilitates rapid establishment and optimisation of Agrobacterium-mediated transformation for barley by instant monitoring of the transformation success. The synthetic green fluorescent protein (sgfpS65T) reporter gene was introduced in combination with thehpt selectable marker gene into immature embryos of barley (Hordeum vulgare L.) by cocultivation with Agrobacterium tumefaciens strain AGLO harboring binary vector pYF133. Using green fluorescent protein (GFP) as a non-destructive visual marker allowed us to identify single-cell recipients of T-DNA at an early stage, track their fate and evaluate factors that affect T-DNA delivery. GFP screening was combined with a low level hygromycin selection. Consequently, transgenic plantlets ready to transfer to soil were obtained within 50 days of explant culture. Southern blot- and progeny segregation analyses revealed a single copy T-DNA insert in more than half of the transgenic barley plants. T-DNA/barley genomic DNA junctions were amplified and sequenced. The right T-DNA ends were highly conserved and clustered around the first 4 nucleotides of the right 25 bp border repeat, while the left T-DNA ends were more variable, located either in the left 25 bp border repeat or within 13 bp from the left repeat. T-DNAs were transferred from Agrobacterium to barley with exclusion of vector sequence suggesting a similar molecular T-DNA transfer mechanism as in dicotyledonous plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号