首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   26篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   15篇
  2021年   30篇
  2020年   13篇
  2019年   12篇
  2018年   30篇
  2017年   23篇
  2016年   20篇
  2015年   28篇
  2014年   47篇
  2013年   58篇
  2012年   61篇
  2011年   45篇
  2010年   34篇
  2009年   28篇
  2008年   27篇
  2007年   23篇
  2006年   26篇
  2005年   11篇
  2004年   18篇
  2003年   12篇
  2002年   11篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1986年   2篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有607条查询结果,搜索用时 15 毫秒
81.
An unprecedented series of organometallic HCV (hepatitis C virus) NS5A (nonstructural 5A protein) replication complex inhibitors that incorporates a 1,1′-ferrocenediyl scaffold was explored. This scaffold introduces the elements of linear flexibility and non-planar topology that are unconventional for this class of inhibitors. Data from 2-D NMR spectroscopic analyses of these complexes in solution support an anti (unstacked) arrangement of the pharmacophoric groups. Several complexes demonstrate single-digit picomolar in vitro activity in an HCV genotype-1b replicon system. One complex to arise from this investigation (10a) exhibits exceptional picomolar activity against HCV genotype 1a and 1b replicons, low hepatocellular cytotoxicity, and good pharmacokinetic properties in rat.  相似文献   
82.
83.
84.
Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100?nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.  相似文献   
85.
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.  相似文献   
86.
Apoptosis is a programmed cell death that efficiently removes damaged cells to maintain tissue homeostasis. Defect in apoptotic machinery can lead to tumor development, progression, and resistance to chemotherapy. PUMA (p53 upregulated modulator of apoptosis) and BAX (BCL2-associated X protein) are among the most well-known inducers of apoptosis. It has been reported that expression levels of BAX and PUMA are controlled at the posttranslational level by phosphorylation. However, the posttranslational regulation of these proapoptotic proteins remains largely unexplored. In this study, using biochemical, molecular biology, flow cytometric, and immunohistochemistry techniques, we show that PUMA and BAX are the direct target of the F-box protein FBXL20, which restricts their cellular levels. FBXL20 directs the proteasomal degradation of PUMA and BAX in a protein kinase AKT1-dependent manner to promote cancer cell proliferation and tumor growth. Interestingly, inactivation of AKT1 results in activation of another protein kinase GSK3α/β, which facilitates the proteasomal degradation of FBXL20 by another F-box protein, FBXO31. Thus, a switch between two signaling kinases AKT1 and GSK3α/β modulates the functional activity of these proapoptotic regulators, thereby determining cell survival or death. RNAi-mediated ablation of FBXL20 results in increased levels of PUMA as well as BAX, which further enhances the sensitivity of cancer cells to chemotherapeutic drugs. We showed that high level expression of FBXL20 in cancer cells reduces therapeutic drug-induced apoptosis and promotes chemoresistance. Overall, this study highlights the importance of targeting FBXL20 in cancers in conjunction with chemotherapy and may represent a promising anticancer strategy to overcome chemoresistance.  相似文献   
87.
Chayote or chow–chow is an underutilized cucurbit vegetable crop, widely cultivated by farmers in the backyards and Jhum lands for its tender leaves, fruits and tuberous root. In order to initiate crop improvement program in this crop, the present study was undertaken to assess the genetic variations in the 74 chow–chow landraces collected from the North Eastern Hill region of India. Wide variations for fruit colors, fruit length (6.5–21.5 cm), fruit width (4.2–10.7 cm), fruit weight (60–560 g), vitamin-C (2.6–13.8 mg/100 g), reducing sugar (0.18–2.77%), total sugar (1.09–2.94%) and phenol content (0.17–3.85 mg/100 g FW) were recorded among the landraces. All the landraces were also characterized using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. In RAPD analyses, out of 28 primers a total of 198 reproducible amplicons were formed at an average of 7.01 per primer and an overall polymorphism of 88.38%. Eight fragments were specific to landraces with light green fruits. Four fragments were observed to be specific to RCSC-22 (dark green fruits) and another four specific to a RCSC-30 (pale yellow fruits). Out of 30 ISSR, only 5 primers generated a total of 32 reproducible amplicons with an average of 6.4 per primer and overall polymorphism of 62.5%. The pair wise similarity coefficient values ranged from 0.55 to 0.96. The grouping of landraces in cluster analysis was found to be independent of their respective geographic locations. The cuttings of suckers and shoot top (2 months old) treated with indole-3-butyric acid (200 mg l?1) provide an alternative for the conservation of the diverse genetic materials to the researchers.  相似文献   
88.
89.
Stress granules (SG) are membrane‐less compartments involved in regulating mRNAs during stress. Aberrant forms of SGs have been implicated in age‐related diseases, such as amyotrophic lateral sclerosis (ALS), but the molecular events triggering their formation are still unknown. Here, we find that misfolded proteins, such as ALS‐linked variants of SOD1, specifically accumulate and aggregate within SGs in human cells. This decreases the dynamics of SGs, changes SG composition, and triggers an aberrant liquid‐to‐solid transition of in vitro reconstituted compartments. We show that chaperone recruitment prevents the formation of aberrant SGs and promotes SG disassembly when the stress subsides. Moreover, we identify a backup system for SG clearance, which involves transport of aberrant SGs to the aggresome and their degradation by autophagy. Thus, cells employ a system of SG quality control to prevent accumulation of misfolded proteins and maintain the dynamic state of SGs, which may have relevance for ALS and related diseases.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号