首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   12篇
  127篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1977年   3篇
  1975年   1篇
  1972年   1篇
  1948年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
121.
The sequences of the linked alpha 2- and alpha 1-globin genes of the equine BI and BII haplotypes are greater than 99% identical within a 1.2-kb region extending from approximately 75 bp upstream of the putative cap site to a point approximately 150 bp 3' to the poly A addition signal. Differences between the alpha 2 and alpha 1 genes that are common to both haplotypes indicate that a major gene conversion occurred approximately 12 Myr ago and that this has been followed by shorter, more localized, conversions. Interhaplotype (allelic) comparisons at the alpha loci suggest that the BI and BII haplotypes have probably existed independently greater than or equal to 0.5 Myr and that the alpha 1 genes may have undergone a recent interchromosomal gene conversion.   相似文献   
122.
The behavior of E. coli ribosomes during sedimentation on sucrose gradients is predicted under a variety of conditions by computer simulations. Since numerous recent kinetic studies indicate equilibration in times short compared to the time of sedimentation, these simulations assume that the system attains local reaction equilibrium at every point in the gradient at all times. For any type of homogeneous equilibrating ribosome population, governed by a single formation constant at one atmosphere pressure for 70S couples, no more than two clearly defined zones will be resolved, although the presence of large dissociating effects due to pressure gradients in high speed experiments will spread the subunit zone. Normally the pattern will consist of a 30S zone and a so-called “70S” zone, which is in reality a mixture of 70S couples and 30S and 50S subunits in local equilibrium. The greater the dissociation into subunits, the more the “70S” zone will be slowed below the nominal rate of 70 Svedberg units. If ribosomes have been collected from the “70S” zone in several successive cycles of purification, the repeated deletion of resolved 30S subunits can result in a preparation with so large a molar excess of 50S subunits that the ensuing sucrose density gradient sedimentation pattern may exhibit a “70S” zone followed by zone of 50S subunits, insteadof a zone of 30S subunits. Our most important conclusion is that whenever a well-resolved 50S zone is present in a sucrose density gradient sedimentation experiment on E. coli ribosomes, in addition to a 30S and a “70S” zone, under conditions where ribosomes and subunits should be in reversible equilibrium, the preparation must be microheterogeneous, containing a mixture of “tight” and “loose” couples. Moreover in such cases the content of large subunits in the 50S zone must be derived entirely from “loose” couples whereas the 30S zone must contain small subunits derived from both “tight” and “loose” couples. Sedimentation patterns predicted for various mixtures of “tight” and “loose” couples display all the major characteristics of published experimental patterns for E. coli ribosomes, including the partial or complete resolution into three zones, depending on rotor velocity and level of Mg2+.  相似文献   
123.
P L Gilbert  D E Graves  M Britt  J B Chaires 《Biochemistry》1991,30(45):10931-10937
The photoaffinity analogue ethidium monoazide was used to prepare samples of poly(dGdC).poly(dGdC) containing covalently attached ethidium. The effects of both noncovalently and covalently bound ethidium on the kinetics of the NaCl-induced B to Z transition in poly(dGdC).poly(dGdC) was examined using absorbance and fluorescence spectroscopy to monitor the reaction. Covalently and noncovalently attached ethidium were equal in the extent to which they reduce the rate of the B to Z transition. By using fluorescence to selectively monitor the fate of noncovalently bound ethidium over the course of the transition, we found that ethidium completely dissociates as the reaction proceeds, but at a rate that lags behind the conversion of the polymer to the Z form. These experiments provide evidence for the redistribution of noncovalently bound ethidium over the course of the B to Z transition, leading to the development of biphasic reaction kinetics. The observed kinetics suggest that the primary effect of both covalently and noncovalently bound ethidium is on the nucleation step of the B to Z transition. The reduction in the rate of the B to Z transition by noncovalently or covalently bound ethidium may be quantitatively explained as resulting from the reduced probability of finding a drug-free length of helix long enough for nucleation to occur. As necessary ancillary experiments, the defined length deoxyoligonucleotides (dGdC)4, (dGdC)5, and (dGdC)6 were synthesized and used in kinetic experiments designed to determine the nucleation length of the B to Z transition, which was found to be 6 bp. The activation energy of the B to Z transition was demonstrated to be independent of the amount of covalently bound ethidium and was found to be 21.2 +/- 1.1 kcal mol-1. Covalent attachment of ethidium was observed to increase the rate of the reverse Z to B transition, presumably by locking regions of the polymer into a right-handed conformation and thereby providing nucleation sites from which the Z to B conversion may propagate.  相似文献   
124.
125.
Abstract

The structure and stability of the left handed Z* DNA aggregate was examined by spectroscopic methods and by electron microscopy. Poly(dGdC), upon heating in the presence of Mn++, forms a large aggregate which may be sedimented at 12,000 X g, with a circular dichroism spectrum characteristic of left handed DNA Aggregation gives rise to turbidity changes at visible wavelengths, providing a convenient means of monitoring the transition in solution. The wavelength dependence of turbidity is consistent with the scattering behavior of a long thin rod. Electron microscopy shows that Z* DNA is a large fibrous structure of indeterminant length, with a uniform diameter of approximately 20 nm. The results obtained in solution and under the requisite conditions for electron microscopy are mutually consistent Poly(dGdC) preparations with average lengths of 60,240,500, and 2000 base pairs all form Z* DNA Poly(dGm5dC) forms Z* DNA in the presence of Mn++ without heating, but poly(dAdC)-poly(dGdT) and calf thymus DNA cannot be induced to the Z* form under any conditions tried. Kinetic studies, monitored by turbidity changes, provide evidence that the formation of Z* DNA proceeds by a nucleated condensation mechanism. Dissolution of the Z* aggregate results from the chelation of Mn++ or by the addition of the intercalator ethidium bromide. The allosteric conversion of Z* DNA to an intercalated, right handed form by ethidium is demonstrated by kinetic studies, equilibrium binding studies and circular dichroism spectroscopy. Electron microscopy provides a striking visualization of the dissolution of the Z* aggregate by ethidium.  相似文献   
126.
Relaxation kinetics measurements on two types of ribosome preparations were parformed by the pressure-jump and temperature-Jump techniques, using light scattered at 90° as detector. For freshly prepared tibosomes isolated as 70S tight coupled from 26 000 RPM sucrose gradint sedimentation in 10 mM Mg2+, surprisingly large reaction amplitudes were found in 10 mM Mg2+ wilh both techniques, leading to an overall formation constant for 70S couples approximately three orders of magnitude smaller than that reported fot tight couples. For pelleted, two-tunes salt-washed ribosomes, amplitude titration versus Mg2+ in the pressure-jump apparatus showed an amplitude maximum near 10 mM Mg2+ with a relaxation time near 20 ms, and a second amplitude maximum near 2.5 mM Mg2+ with a relaxation time near 25 s. Both types of preparation on reanalysis on sucrose gradients at 5 mM Mg2+ showed approximately 15% of subunits, with a distinct zone in the 50S region. 70S light couples recovered from a sucrose density gradient separation at 5 mM Mg2+ on pelleted two-times salt-washed ribosomes behaved in the same way as the original sample in pressure-jump experiments at 10 mM Mg2+. These findings have been interpreted as follows (I) the processes observed at 10 mM Mg2+ are due entirety to the relatively small loose couple content of the samples, even in the case of material isolated as 70S tight couples, (2) the processes observed at 2.5 mM Mg2+ are due almost entirely to the preponderant tight couple population of the material, and (3) samples isolated as 70S tight couples from sucrose gradients at 5 mM Mg2+ spontaneously revert within hours into micro-heterogeneous material containing about 15% loose couples, for both types of ribosomes.  相似文献   
127.
Virtual Screening is an increasingly attractive way to discover new small molecules with potential medicinal value. We introduce a novel strategy that integrates use of the molecular docking software Surflex with experimental validation by the method of competition dialysis. This integrated approach was used to identify ligands that selectively bind to the triplex DNA poly(dA)-[poly(dT)]2. A library containing ~2 million ligands was virtually screened to identify compounds with chemical and structural similarity to a known triplex intercalator, the napthylquinoline MHQ-12. Further molecular docking studies using compounds with high structural similarity resulted in two compounds that were then demonstrated by competition dialysis to have a superior affinity and selectivity for the triplex nucleic acid than MHQ-12. One of the compounds has a different chemical backbone than MHQ-12, which demonstrates the ability of this strategy to ‘scaffold hop’ and to identify small molecules with novel binding properties. Biophysical characterization of these compounds by circular dichroism and thermal denaturation studies confirmed their binding mode and selectivity. These studies provide a proof-of-principle for our integrated screening strategy, and suggest that this platform may be extended to discover new compounds that target therapeutically relevant nucleic acid morphologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号