首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2071篇
  免费   125篇
  国内免费   95篇
  2291篇
  2023年   23篇
  2022年   47篇
  2021年   91篇
  2020年   51篇
  2019年   56篇
  2018年   56篇
  2017年   51篇
  2016年   70篇
  2015年   141篇
  2014年   105篇
  2013年   145篇
  2012年   193篇
  2011年   172篇
  2010年   102篇
  2009年   69篇
  2008年   123篇
  2007年   96篇
  2006年   83篇
  2005年   78篇
  2004年   57篇
  2003年   65篇
  2002年   43篇
  2001年   57篇
  2000年   38篇
  1999年   53篇
  1998年   19篇
  1997年   13篇
  1996年   14篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   20篇
  1991年   15篇
  1990年   20篇
  1989年   22篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1983年   3篇
  1979年   4篇
  1978年   5篇
  1975年   3篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1967年   2篇
  1966年   2篇
  1956年   2篇
排序方式: 共有2291条查询结果,搜索用时 15 毫秒
101.
Han J  Ito Y  Yeo JY  Sucov HM  Maas R  Chai Y 《Developmental biology》2003,261(1):183-196
Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.  相似文献   
102.
103.
Plasmodium vivax malaria re-emerged in South Korea in 1993, and epidemics continue since then. We examined genetic variation in the region encompassing the apical membrane antigen-1 (PvAMA-1) of the parasites by DNA sequencing of the 22 re-emerging P. vivax isolates. The genotype of the PvAMA-1, which was based on sequence data previously reported for the polymorphic regions, showed that two haplotypes were present at one polymorphic site. Compared with reported data, the two types, SKOR type I and type II, were similar to Chinese CH-10A and CH-05A isolates, respectively. Thus, the present study showed that two genotypes of AMA-1 genes coexist in the re-emerging Korean P. vivax.  相似文献   
104.
An assay based on a solvent-sensitive fluorogenic dye molecule, badan, is used to test the binding affinity of a library of tetrapeptide molecules for the BIR3 (baculovirus IAP repeat) domain of XIAP (X-linked inhibitor of apoptosis protein). The fluorophore is attached to a tetrapeptide, Ala-Val-Pro-Cys-NH(2), through a thiol linkage and, upon binding to XIAP, undergoes a solvatochromic shift in fluorescence emission. When a molecule (e.g., a natural protein known to bind to XIAP or a tetrapeptide mimic) displaces the dye, the emission shifts back to the spectrum observed in water. As emission intensity is related to the binding of the tetrapeptide, the intensity can be used to determine the equilibrium constant, K, for the displacement of the dye by the tetrapeptide. The results permit residue-specific analysis of the interaction. Furthermore, we show that hydrophobic effects in the fourth position are general and can effectively increase overall affinity.  相似文献   
105.
We describe microarrays of oligosaccharides as neoglycolipids and their robust display on nitrocellulose. The arrays are obtained from glycoproteins, glycolipids, proteoglycans, polysaccharides, whole organs, or from chemically synthesized oligosaccharides. We show that carbohydrate-recognizing proteins single out their ligands not only in arrays of homogeneous oligosaccharides but also in arrays of heterogeneous oligosaccharides. Initial applications have revealed new findings, including: (i) among O-glycans in brain, a relative abundance of the Lewis(x) sequence based on N-acetyllactosamine recognized by anti-L5, and a paucity of the Lewis(x) sequence based on poly-N-acetyllactosamine recognized by anti-SSEA-1; (ii) insights into chondroitin sulfate oligosaccharides recognized by an antiserum and an antibody (CS-56) to chondroitin sulfates; and (iii) binding of the cytokine interferon-gamma (IFN-gamma) and the chemokine RANTES to sulfated sequences such as HNK-1, sulfo-Lewis(x), and sulfo-Lewis(a), in addition to glycosaminoglycans. The approach opens the way for discovering new carbohydrate-recognizing proteins in the proteome and for mapping the repertoire of carbohydrate recognition structures in the glycome.  相似文献   
106.
The purpose of this study was to assess the chromium (Cr) distribution in chromium-rich brewer’s yeast cell. The chromium concentrations in the cell wall and protoplast fractions of the chromium-rich yeast were determined by neutron activation analysis (NAA). Moreover, the combined state of chromium and amino acid content in the Cr-rich brewer’s yeasts was analyzed and measured. The experimental results indicate that the introduction of water-soluble chromium (III) salt as a component of the culture medium for yeasts results in a substantial amount of chromium absorbed through the cell wall by the yeast, among which 80.9% are accumulated in the protoplast. It implies that, under optimal conditions, yeasts are capable of accumulating large amounts of chromium and incorporating chromium into organic compounds.  相似文献   
107.
The present study examines the coexistence of neurons in the same cardiovascular point of the pontomedulla that integrates urinary bladder (UB) motility, and pelvic nerve activity (PNA). Microinjection of monosodium L-glutamate (Glu) into the locus coeruleus (LC), the gigantocellular tegmental field (FTG), the rostral ventrolateral medulla (RVLM), and the dorsomedial medulla (DM) produced pressor responses, whereas injection into the lateral tegmental field (FTL), the nucleus of tractus solitarii (NTS), and the caudal ventrolateral medulla (CVLM) produced depressor responses. However, microinjection of Glu into the dorsomotor nucleus of the vagus (DMV) and the ambiguus nucleus (AN), where the vagus nerve originates, produced marked bradycardia. Many of these cardiovascular responses were accompanied by increased, or decreased parasympathetic PNA. In six animals, sympathetic renal nerve activity (RNA) and PNA also increased simultaneously during the pressor response. The present study also examines the connection between the DMV-AN and the sacral intermediolateral column (IML), where parasympathetic preganglionic neurons (PGNs) of the pelvic nerve located. Biotinylated dextran amine (BDA), an anterograde tracer, was iontophoretically injected into the DMV or AN. No labelled terminal or neuron was detected in the sacral IML, but labelled terminals were observed in the bilateral LC, and also in the bilateral sides of the FTG, FTL, RVLM, DM, and CVLM. These results suggest that neurons of the DMV and/or AN may indirectly regulate the sacral parasympathetic PGNs through the LC for supraspinal control of the pelvic nerve. Furthermore, these results also suggest the coexistence of multiple autonomic integrating mechanisms of different kinds within various cardiovascular areas of the pontomedulla.  相似文献   
108.
Secretory phospholipase A(2) (sPLA(2)) plays important roles in cellular signaling and various biological events. In this study, we examined the biological effects and the potential signaling mechanism of purified sPLA(2) in MV1Lu cells. Three types of snake venom sPLA(2) were purified and their enzymatic activities were characterized by using various lipid substrates prepared from [3H]-myristate-labeled cells and by determining their effects on the induction of arachidonic acid (AA) release. The purified sPLA(2) induced apoptosis in Mv1Lu cells in a dose- and time-dependent manner, and was associated with a rapid increase in the intracellular ceramide level. Similar apoptotic effects were observed in Mv1Lu cells treated with exogenous ceramide analog, C(2)- and C(8)-ceramide. Moreover, treatment of cells with sphingomyelinase (SMase), which reduced the intracellular SM level, enhanced the apoptotic response to sPLA(2)s. sPLA(2)s also displayed an inhibitory effect on bradykinin-induced phospholipase D (PLD) activity, which can be imitated by exogenous ceramide. Our data indicate that sPLA(2) induces cell apoptosis via a mechanism involving increased ceramide generation.  相似文献   
109.
p18(INK4c) is a member of the INK4 family of proteins that regulate the G(1) to S cell cycle transition by binding to and inhibiting the pRb kinase activity of cyclin-dependent kinases 4 and 6. The p16(INK4a) member of the INK4 protein family is altered in a variety of cancers and structure-function studies of the INK4 proteins reveal that the vast majority of missense tumor-derived p16(INK4a) mutations reduce protein thermodynamic stability. Based on this observation, we used p18(INK4c) as a model to test the proposal that INK4 proteins with increased stability might have enhanced cell cycle inhibitory activity. Structure-based mutagenesis was used to prepare p18(INK4c) mutant proteins with a predicted increase in stability. Using this approach, we report the generation of three mutant p18(INK4C) proteins, F71N, F82Q, and F92N, with increased stability toward thermal denaturation of which the F71N mutant also showed an increased stability to chemical denaturation. The x-ray crystal structures of the F71N, F82Q, and F92N p18INK4C mutant proteins were determined to reveal the structural basis for their increased stability properties. Significantly, the F71N mutant also showed enhanced CDK6 interaction and cell cycle inhibitory activity in vivo, as measured using co-immunoprecipitation and transient transfection assays, respectively. These studies show that a structure-based approach to increase the thermodynamic stability of INK4 proteins can be exploited to prepare more biologically active molecules with potential applications for the development of molecules to treat p16(INK4a)-mediated cancers.  相似文献   
110.
The brain renin-angiotensin system: location and physiological roles   总被引:7,自引:0,他引:7  
Angiotensinogen, the precursor molecule for angiotensins I, II and III, and the enzymes renin, angiotensin-converting enzyme (ACE), and aminopeptidases A and N may all be synthesised within the brain. Angiotensin (Ang) AT(1), AT(2) and AT(4) receptors are also plentiful in the brain. AT(1) receptors are found in several brain regions, such as the hypothalamic paraventricular and supraoptic nuclei, the lamina terminalis, lateral parabrachial nucleus, ventrolateral medulla and nucleus of the solitary tract (NTS), which are known to have roles in the regulation of the cardiovascular system and/or body fluid and electrolyte balance. Immunohistochemical and neuropharmacological studies suggest that angiotensinergic neural pathways utilise Ang II and/or Ang III as a neurotransmitter or neuromodulator in the aforementioned brain regions. Angiotensinogen is synthesised predominantly in astrocytes, but the processes by which Ang II is generated or incorporated in neurons for utilisation as a neurotransmitter is unknown. Centrally administered AT(1) receptor antagonists or angiotensinogen antisense oligonucleotides inhibit sympathetic activity and reduce arterial blood pressure in certain physiological or pathophysiological conditions, as well as disrupting water drinking and sodium appetite, vasopressin secretion, sodium excretion, renin release and thermoregulation. The AT(4) receptor is identical to insulin-regulated aminopeptidase (IRAP) and plays a role in memory mechanisms. In conclusion, angiotensinergic neural pathways and angiotensin peptides are important in neural function and may have important homeostatic roles, particularly related to cardiovascular function, osmoregulation and thermoregulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号