首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   9篇
  115篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   9篇
  2011年   2篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   11篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有115条查询结果,搜索用时 0 毫秒
61.
Toll‐like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro‐inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to induce cellular protection from stress in cardiomyocytes and neurons. However, the mechanism by which TLR9 stimulation reduces energy substrates remained unknown. Here, we identify the calcium‐transporting ATPase, SERCA2 (also known as Atp2a2), as a key molecule for the alternative TLR9 signalling pathway. TLR9 stimulation reduces SERCA2 activity, modulating Ca2+ handling between the SR/ER and mitochondria, which leads to a decrease in mitochondrial ATP levels and the activation of cellular protective machinery. These findings reveal how distinct innate responses can be elicited in immune and non‐immune cells—including cardiomyocytes—using the same ligand‐receptor system.  相似文献   
62.
This research provides a new way to measure error in microarray data in order to improve gene expression analysis.Microarray data contains many sources of error.In order to glean information about mRNA expression levels,the true signal must first be segregated from noise.This research focuses on the variation that can be captured at the spot level in cDNA microarray images.Variation at other levels,due to differences at the array,dye,and block levels,can be corrected for by a variety of existing normalizati...  相似文献   
63.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   
64.
The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central ‘antennal lobe neurons’ (ALNs) in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1) an acceleration of cumulative inactivation, and (2) a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and processing of information at several levels of the bees olfactory pathway.  相似文献   
65.
The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure‐based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well‐separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non‐native contact interactions in different folding scenarios. These findings strongly correlate with the protein free‐energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins.Proteins 2013; 81:1727–1737. © 2013 Wiley Periodicals, Inc.  相似文献   
66.

Background

Targeting nanoobjects via the iron-acquisition pathway is always reported slower than the transferrin/receptor endocytosis. Is there a remedy?

Methods

Maghemite superparamagnetic and theragnostic nanoparticles (diameter 8.6 nm) were synthesized, coated with 3-aminopropyltriethoxysilane (NP) and coupled to four holotransferrin (TFe2) by amide bonds (TFe2–NP). The constructs were characterized by X-ray diffraction, transmission electron microscopy, FTIR, X-ray Electron Spectroscopy, Inductively Coupled Plasma with Atomic Emission Spectrometry. The in-vitro protein/protein interaction of TFe2–NP with transferrin receptor-1 (R1) and endocytosis in HeLa cells were investigated spectrophotometrically, by fast T-jump kinetics and confocal microscopy.

Results

In-vitro, R1 interacts with TFe2–NP with an overall dissociation constant KD = 11 nM. This interaction occurs in two steps: in the first, the C-lobe of the TFe2–NP interacts with R1 in 50 μs: second-order rate constant, k1 = 6 × 1010 M− 1 s− 1; first-order rate constant, k− 1 = 9 × 104 s− 1; dissociation constant, K1d = 1.5 μM. In the second step, the protein/protein adduct undergoes a slow (10,000 s) change in conformation to reach equilibrium. This mechanism is identical to that occurring with the free TFe2. In HeLa cells, TFe2–NP is internalized in the cytosol in less than 15 min.

Conclusion

This is the first time that a nanoparticle–transferrin construct is shown to interact with R1 and is internalized in time scales similar to those of the free holotransferrin.

General significance

TFe2–NP behaves as free TFe2 and constitutes a model for rapidly targeting theragnostic devices via the main iron-acquisition pathway.  相似文献   
67.
This article deals with the kinetics and thermodynamics of complex formation between Fe(3+) and a series of four synthetic chelators of the 1,2-dicatecholspermidine family (LA5, LA3, LE5 and LE3). LA5 and LA3 bear a carboxylic moiety linked to the central nitrogen by either a C(5) or a C(3) chain, whereas LE5 and LE3 bear an ethyl ester moiety. The following data concern LE5, LE3, LA5 and LA3, respectively. Each species undergoes four acid-base dissociations of the hydroxyls of the catechols with, for the two hydroxyls in position 1; average pK(2a)=7.30, 7.25, 7.45, 7.34 and, for the two hydroxyl in position 2; average pK(3a)=12.35, 12.65, 12.10, 12.60. The LA5 and LA3 species also undergo proton-dissociations of their carboxylic moieties; pK(1a)=5.20 and 5.10. The four species form one-to-one iron complexes with, for the 1-hydroxyl; an average pK(22a)=2.65, 2.25, 2.95, 2.80, for the 2-hydroxyl; pK(33a)=5.20, 5.40, 6.10, 5.40 and, for the carboxylic moieties; pK(11a)=3.90 and 4.45. In the vicinity of pH 5, Fe(3+) is rapidly exchanged between FeNta and the four ligands. This occurs with direct rate constants: k(1)=(1.3+/-0.1)x10(4), (1.4+/-0.2)x10(4), (3.3+/-0.2)x10(4), (1.4+/-0.1)x10(4)M(-1)s(-1), and reverse rate constants: k(-1)=(7+/-0.5)x10(4), (9+/-1)x10(4), (1.15+/-0.15)x10(5), (7+/-0.5)x10(4)M(-1)s(-1). The kinetic data, the pK(a) values of the free ligands, those of the iron complexes and the beta value of FeNta allow us to determine the affinity constants of the four ligands for iron: logbeta(1)=33, 34, 33, 34, and pFe=23.3, 24.6, 22.2, 24.3. This implies that these ligands of the dicatecholspermidine family may act as siderophores. They may also be used as drug carriers which can utilize the bacterial iron-acquisition paths.  相似文献   
68.
Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15–2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level.  相似文献   
69.
During iron acquisition by the cell, complete homodimeric transferrin receptor 1 in an unknown state (R1) binds iron-loaded human serum apotransferrin in an unknown state (T) and allows its internalization in the cytoplasm. T also forms complexes with metals other than iron. Are these metals incorporated by the iron acquisition pathway and how can other proteins interact with R1? We report here a four-step mechanism for cobalt(III) transfer from CoNtaCO(3)(2-) to T and analyze the interaction of cobalt-loaded transferrin with R1. The first step in cobalt uptake by T is a fast transfer of Co(3+) and CO(3)(2-) from CoNtaCO(3)(2-) to the metal-binding site in the C-lobe of T: direct rate constant, k(1)=(1.1+/-0.1) x 10(6) M(-1) s(-1); reverse rate constant, k(-1)=(1.9+/-0.6) x 10(6) M(-1) s(-1); and equilibrium constant, K=1.7+/-0.7. This step is followed by a proton-assisted conformational change of the C-lobe: direct rate constant, k(2)=(3+/-0.3) x 10(6) M(-1) s(-1); reverse rate constant, k(-2)=(1.6+/-0.3) x 10(-2) s(-1); and equilibrium constant, K(2a)=5.3+/-1.5 nM. The two final steps are slow changes in the conformation of the protein (0.5 h and 72 h), which allow it to achieve its final thermodynamic state and also to acquire second cobalt. The cobalt-saturated transferrin in an unknown state (TCo(2)) interacts with R1 in two different steps. The first is an ultra-fast interaction of the C-lobe of TCo(2) with the helical domain of R1: direct rate constant, k(3)=(4.4+/-0.6)x10(10) M(-1) s(-1); reverse rate constant, k(-3)=(3.6+/-0.6) x 10(4) s(-1); and dissociation constant, K(1d)=0.82+/-0.25 muM. The second is a very slow interaction of the N-lobe of TCo(2) with the protease-like domain of R1. This increases the stability of the protein-protein adduct by 30-fold with an average overall dissociation constant K(d)=25+/-10 nM. The main trigger in the R1-mediated iron acquisition is the ultra-fast interaction of the metal-loaded C-lobe of T with R1. This step is much faster than endocytosis, which in turn is much faster than the interaction of the N-lobe of T with the protease-like domain. This can explain why other metal-loaded transferrins or a protein such as HFE-with a lower affinity for R1 than iron-saturated transferrin but with, however, similar or higher affinities for the helical domain than the C-lobe-competes with iron-saturated transferrin in an unknown state towards interaction with R1.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号