首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
  2022年   1篇
  2021年   7篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  1985年   1篇
  1980年   3篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
11.
Andrographolide, a diterpene lactone, is isolated from Andrographis paniculata which is well known for its medicinal properties. The biosynthetic route to andrographolide was studied using [1-13C]acetate, [2-13C]acetate and [1,6-13C2]glucose. The peak enrichment of eight carbon atoms in the 13C NMR spectra of andrographolide suggested that deoxyxylulose pathway (DXP) is the major biosynthetic pathway to this diterpene.The contribution of the mevalonic acid pathway (MVA) is indicated by the observed 13C-labeling pattern, and because the labeling patterns indicate a simultaneous contribution of both methyl erythritol phosphate (MEP) and MVA pathways it can be deduced that cross-talk occurs between plastids and cytoplasm.  相似文献   
12.
Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30±2 °C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6–44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.  相似文献   
13.
14.
The Kelch-like (KLHL) gene family encodes a group of proteins that generally possess a BTB/POZ domain, a BACK domain, and five to six Kelch motifs. BTB domains facilitate protein binding and dimerization. The BACK domain has no known function yet is of functional importance since mutations in this domain are associated with disease. Kelch domains form a tertiary structure of β-propellers that have a role in extracellular functions, morphology, and binding to other proteins. Presently, 42 KLHL genes have been classified by the HUGO Gene Nomenclature Committee (HGNC), and they are found across multiple human chromosomes. The KLHL family is conserved throughout evolution. Phylogenetic analysis of KLHL family members suggests that it can be subdivided into three subgroups with KLHL11 as the oldest member and KLHL9 as the youngest. Several KLHL proteins bind to the E3 ligase cullin 3 and are known to be involved in ubiquitination. KLHL genes are responsible for several Mendelian diseases and have been associated with cancer. Further investigation of this family of proteins will likely provide valuable insights into basic biology and human disease.  相似文献   
15.
The ApoE gene responsible for the Alzheimer's disease has been examined to identify functional consequences of single-nucleotide polymorphisms (SNPs). Eighty-eight SNPs have been identified in the ApoE gene in which 31 are found to be nonsynonymous, 8 of them are coding synonymous, 33 are found to be in intron, and 3 are in untranslated region. The SNPs found in the untranslated region consisted of two SNPs from 5′ and one SNP from the 3′. Twenty-nine percent of the identified nsSNPs have been reported as damaging. In the analysis of SNPs in the UTR regions, it has been recognized that rs72654467 from 5′ and rs71673244 from 5′ and 3′ are responsible for the alteration in levels of expression. Both native and mutant protein structures were analyzed along with the stabilization residues. It has been concluded that among all SNPs of ApoE, the mutation in rs11542041 (R132S) has the most significant effect on functional variation.  相似文献   
16.
Abstract

Protein structures are highly dynamic macromolecules. This dynamics is often analysed through experimental and/or computational methods only for an isolated or a limited number of proteins. Here, we explore large-scale protein dynamics simulation to observe dynamics of local protein conformations using different perspectives. We analysed molecular dynamics to investigate protein flexibility locally, using classical approaches such as RMSf, solvent accessibility, but also innovative approaches such as local entropy. First, we focussed on classical secondary structures and analysed specifically how β-strand, β–turns, and bends evolve during molecular simulations. We underlined interesting specific bias between β–turns and bends, which are considered as the same category, while their dynamics show differences. Second, we used a structural alphabet that is able to approximate every part of the protein structures conformations, namely protein blocks (PBs) to analyse (i) how each initial local protein conformations evolve during dynamics and (ii) if some exchange can exist among these PBs. Interestingly, the results are largely complex than simple regular/rigid and coil/flexible exchange. Abbreviations Neq number of equivalent

PB Protein Blocks

PDB Protein DataBank

RMSf root mean square fluctuations

Communicated by Ramaswamy H. Sarma  相似文献   
17.
Physiology and Molecular Biology of Plants - NaCl and PEG stresses have negative impacts on seed germination and early seedling establishment in Oryza sativa. The present study was designed to...  相似文献   
18.
Seed protein analysis and morphological characterization were carried out in one cultivated and one wild species of Sesamum, Sesamum indicum L. and S. occidentale Regel and Heer. Data on 13 quantitative and 33 qualitative characters of the cultivated species and seven accessions of the wild taxa were analyzed. The genetic diversity of the taxa was assessed using UPGMA dendrogram and one-way ANOVA (p?<?0.05). Principal component analysis (PCA) was executed to identify the significant characters to delimit the taxa. Seed protein analysis showed diverse bands, ranging from 16 to 88?kDa. A dendrogram based on UPGMA analysis of seed protein suggested intraspecific relationships of the wild taxa as evidenced from the morphological characterization.  相似文献   
19.
Posttranslational modification through palmitoylation regulates protein localization and function. In this study, we identify a role for the Drosophila melanogaster palmitoyl transferase Huntingtin-interacting protein 14 (HIP14) in neurotransmitter release. hip14 mutants show exocytic defects at low frequency stimulation and a nearly complete loss of synaptic transmission at higher temperature. Interestingly, two exocytic components known to be palmitoylated, cysteine string protein (CSP) and SNAP25, are severely mislocalized at hip14 mutant synapses. Complementary DNA rescue and localization experiments indicate that HIP14 is required solely in the nervous system and is essential for presynaptic function. Biochemical studies indicate that HIP14 palmitoylates CSP and that CSP is not palmitoylated in hip14 mutants. Furthermore, the hip14 exocytic defects can be suppressed by targeting CSP to synaptic vesicles using a chimeric protein approach. Our data indicate that HIP14 controls neurotransmitter release by regulating the trafficking of CSP to synapses.  相似文献   
20.
The development of robust biocatalysts with increased stability and activity is a major challenge to industry. A major breakthrough in this field was the development of cross-linked enzyme crystals with high specificity and stability. A method is described to produce micro crystals of CLEC lipase, which is thermostable and solvent stable. Lipase from Burkholderia cepacia was crystallized using ammonium sulfate and cross-linked with glutaraldehyde to produce catalytically active enzyme. The maximum yield of CLEC was obtained with 70% ammonium sulfate and cross-linked with 5% (v/v) glutaraldehyde. SEM studies showed small hexagonal-shaped crystals of 2–5 μm size. CLEC lipase had improved thermal and reuse stability. It is versatile, having good activity in both polar and nonpolar organic solvents. CLEC lipase was coated using β cyclodextrin for improving the storage and reuse stability. CLEC was successfully used for esterification of Ibuprofen and synthesis of ethyl butyrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号