首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   52篇
  217篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   6篇
  2015年   10篇
  2014年   6篇
  2013年   6篇
  2012年   10篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   13篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   2篇
  1989年   4篇
  1988年   2篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
61.

Background  

The interaction between the Blue Moon butterfly, Hypolimnas bolina, and Wolbachia has attracted interest because of the high prevalence of male-killing achieved within the species, the ecological consequences of this high prevalence, the intensity of selection on the host to suppress the infection, and the presence of multiple Wolbachia infections inducing different phenotypes. We examined diversity in the co-inherited marker, mtDNA, and the partitioning of this between individuals of different infection status, as a means to investigate the population biology and evolutionary history of the Wolbachia infections.  相似文献   
62.
Mechanochemical coupling in spin-labeled, active, isometric muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Observed effects of inorganic phosphate (P(i)) on active isometric muscle may provide the answer to one of the fundamental questions in muscle biophysics: how are the free energies of the chemical species in the myosin-catalyzed ATP hydrolysis (ATPase) reaction coupled to muscle force?. Pflugers Arch. 414:73-81) showed that active, isometric muscle force varies logarithmically with [P(i)]. Here, by simultaneously measuring electron paramagnetic resonance and the force of spin-labeled muscle fibers, we show that, in active, isometric muscle, the fraction of myosin heads in any given biochemical state is independent of both [P(i)] and force. These direct observations of mechanochemical coupling in muscle are immediately described by a muscle equation of state containing muscle force as a state variable. These results challenge the conventional assumption mechanochemical coupling is localized to individual myosin heads in muscle.  相似文献   
63.
64.
The Bcl-x pre-mRNA is alternatively spliced to produce the anti-apoptotic Bcl-xL and the pro-apoptotic Bcl-xS isoforms. By performing deletion mutagenesis on a human Bcl-x minigene, we have identified a novel exonic element that controls the use of the 5′ splice site of Bcl-xS. The proximal portion of this element acts as a repressor and is located downstream of an enhancer. Further mutational analysis provided a detailed topological map of the regulatory activities revealing a sharp transition between enhancer and repressor sequences. Portions of the enhancer can function when transplanted in another alternative splicing unit. Chromatography and immunoprecipitation assays indicate that the silencer element interacts with heterogeneous ribonucleoprotein particle (hnRNP) K, consistent with the presence of putative high affinity sites for this protein. Finally, down-regulation of hnRNP K by RNA interference enhanced splicing to Bcl-xS, an effect seen only when the sequences bound by hnRNP K are present. Our results therefore document a clear role for hnRNP K in preventing the production of the pro-apoptotic Bcl-xS splice isoform.Alternative splicing is a major mechanism used to augment the number of proteins encoded by the genome. It is estimated that as many as 97% of multiple exon pre-mRNAs undergo alternative splicing (1, 2). Disruption of alternative splicing by mutating important regulatory sequences or by altering the expression or activity of proteins controlling splice site selection has been linked with different diseases, including cancer (37). Apoptosis is an important and complex cellular program involved in development and differentiation in higher organisms (8, 9). However, its aberrant control often contributes to cancer development and the resistance of cancer cells to drug therapy (1013).Genes implicated in the apoptotic pathway are alternatively spliced often to produce protein isoforms with distinct or even antagonistic activities (14, 15). A good example is the apoptotic regulator Bcl-x, which is alternatively spliced to produce two major isoforms, the anti-apoptotic Bcl-xL protein and the shorter pro-apoptotic Bcl-xS isoform (16). This alternative splicing decision involves a competition between two 5′ splice sites; the use of the downstream site creates Bcl-xL, and the use of the upstream one produces Bcl-xS (Fig. 1A). Bcl-xL is always the predominant form in cancer cells, and overexpressing it can confer resistance to chemotherapeutic agents (1722). On the other hand, overexpression of the pro-apoptotic Bcl-xS isoform enhances sensitivity to the topoisomerase inhibitor etoposide and to taxol in a breast cancer cell line, while triggering apoptosis in melanoma cell lines (23, 24). Using antisense technologies to improve the production of the Bcl-xS splice variant can also induce apoptosis in cancer cells (2527).Open in a separate windowFIGURE 1.A, alternative splicing of Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS. B, regulation of Bcl-x alternative splicing. The enhancer elements are shown as white boxes, and the repressors are black. The pointed and flat arrows indicate positive and negative regulation, respectively. Protein kinase C inhibition relieves repression caused by the SB1 element on the Bcl-xS splice site (36). The repressor elements CRCE1, recognized by SAP155, and CRCE2 mediate the production of Bcl-xS by ceramide as when induced by gemcitabine in A549 cells (38, 39). hnRNP F/H binds to the B2G element to enhance the production of the Bcl-xS isoform (41). RBM25, through an element located upstream of the Bcl-xS splice site, can also augment its use (44). A large intronic region (IRE) mediates the Bcl-xL increase caused by interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and 12-O-tetradecanoylphorbol-13-acetate (TPA) (35). Finally, the B3 region also enhances Bcl-xL formation through the binding of SRp30c to AM2 and ML2 and the U1 snRNP to two cryptic 5′ splice sites (42).Alternative splicing is regulated by different proteins bound to sequence elements near splice sites. A variety of mechanisms is used to achieve regulation. Some splicing factors act by recruiting or inhibiting the binding of different components of the spliceosome. Others may change the conformation of the pre-mRNA to mask a splice site or to bring a pair of splice sites into closer proximity (28, 29).Although individual factors can have a strong and specific effect on splicing decisions, alternative splicing often relies on a combination of factors to determine the appropriate levels of isoforms. The implication of multiple proteins likely provides additional levels of regulation that helps attuned splicing control to a variety of stresses, environmental cues, and growth conditions. In several cases, the interaction of regulatory factors can be antagonistic. For example, in the Drosophila male-specific-lethal-2 (msl-2) pre-mRNA, recruitment of SXL to a uridine-rich region interferes with the binding of TIA-1 that is necessary for efficient U1 snRNP2 recruitment at the 5′ splice site (30). On the same pre-mRNA, SXL also diminishes U2AF recognition of the polypyrimidine tract at the 3′ splice site. TIA proteins bound to a U-rich element on the avian myosin phosphatase targeting subunit-1 (MYPT1) pre-mRNA repress the binding of PTB (31). PTB can also reduce the recruitment of ETR-3 to intronic elements near exon 5 of cardiac troponin T (32). In neurons, the binding of PTB to the introns surrounding the N1 exon of c-src is antagonized by nPTB protein, promoting exon inclusion. On the hnRNP A1 pre-mRNA, PTB diminishes the binding of SRp30c to the intronic CE9 element, reducing the inhibition by this protein on the use of the downstream 3′ splice site (33). SC35 and hnRNP A1 have partially overlapping binding sites on the human immunodeficiency virus 1 (HIV-1) tat exon 2. Preferential binding of SC35 enhances the inclusion of the exon, whereas hnRNP A1, by reducing SC35 binding, increases exclusion (34). Thus, the competition provided by an overlapping or a closely abutting pair of enhancer/ silencer represents a simple and frequent mechanism of splicing control.The regulation of Bcl-x alternative splicing has received some attention in recent years leading to the discovery of several cis-acting elements and a few trans-acting control factors (Fig. 1B). Intronic regions downstream from the Bcl-xL 5′ splice site have been implicated as mediating signals from cytokines such as interleukin-6 and granulocyte-macrophage colony-stimulating factor (35). In addition, we have reported that an element located 187 nt upstream of the Bcl-xS splice site mediates a protein kinase C-dependent signal that represses splicing to the Bcl-xS donor site (36). On the other hand, ceramide enhances the use of the Bcl-xS 5′ splice site by lifting the repression mediated by two other elements (37, 38). The activity of one of these apparently involves SAP155 (39). The RNA-binding protein Sam68, under the control of the tyrosine kinase Fyn, can also increase the production of Bcl-xS in cooperation with hnRNP A1 (40), and this effect is inhibited by overexpression of ASF/SF2. The Bcl-x sequences bound by the above factors remain to be identified. We also uncovered enhancer elements for Bcl-xS and Bcl-xL. hnRNP F and H bind downstream of the Bcl-xS 5′ splice site to stimulate splicing to that site (41). Enhancement of Bcl-xL is conferred by SRp30c, which binds upstream of the 5′ splice site to antagonize the repressor activity of pseudo 5′ splice sites (42). Recently, the SR protein SC35 was shown to increase the production of Bcl-xS (43). Finally, the binding of RBM25 to a sequence element upstream of the Bcl-xS 5′ splice site stimulated its use, possibly by recruiting U1 snRNP through its interaction with the U1-associated protein hLuc7A (44). Thus, the region located between the two competing 5′ splice sites of Bcl-x is densely populated by splicing control elements.In this study, we have pursued our characterization of Bcl-x splicing control by examining the contribution of sequences directly upstream of the Bcl-xS donor site. Our mutational approach identified a region containing flanking enhancer and silencer activities. The activity of the repressor portion is mediated by hnRNP K, which makes this protein an anti-apoptotic regulator.  相似文献   
65.
Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.  相似文献   
66.
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.  相似文献   
67.
Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.  相似文献   
68.
69.
Ontogenetic changes in temperature preference of Atlantic cod   总被引:4,自引:0,他引:4  
Final thermal preferendum ( T ) experiments were conducted in a horizontal thermal gradient tank from the beginning of August 2001 to mid‐November 2001 using Atlantic cod Gadus morhua from 6·5 to 79·0 cm fork length ( L F). The value of T varied significantly ( P  < 0·005) with L F( T  = 7·23–0·054 L F), with smaller (younger) fish choosing higher temperatures than larger (older) fish. The preferendum varied from 6·9° C for fish of 6·5 cm to 3·0° C for those of 79·0 cm. Experiments comparing fish positions in the gradient tank between thermal gradients of 0·5–11·0 and 4·5–14·5° C demonstrated that fish positions were determined by temperature selection instead of undesirable tank effects. This study is the first to demonstrate the effect of ontogeny on temperature preferences of a marine fish species.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号