首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   137篇
  国内免费   2篇
  2023年   3篇
  2022年   11篇
  2021年   15篇
  2020年   8篇
  2019年   14篇
  2018年   13篇
  2017年   15篇
  2016年   36篇
  2015年   47篇
  2014年   45篇
  2013年   60篇
  2012年   90篇
  2011年   88篇
  2010年   55篇
  2009年   50篇
  2008年   73篇
  2007年   64篇
  2006年   62篇
  2005年   60篇
  2004年   80篇
  2003年   69篇
  2002年   40篇
  2001年   16篇
  2000年   9篇
  1999年   17篇
  1998年   14篇
  1997年   13篇
  1996年   14篇
  1995年   18篇
  1994年   6篇
  1993年   11篇
  1992年   20篇
  1991年   8篇
  1990年   2篇
  1989年   6篇
  1988年   9篇
  1987年   11篇
  1986年   10篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1971年   1篇
  1965年   1篇
排序方式: 共有1232条查询结果,搜索用时 78 毫秒
21.
Gene Targeting (GT) is the integration of an introduced vector into a specific chromosomal site, via homologous recombination. It is considered an effective tool for precise genome editing, with far-reaching implications in biological research and biotechnology, and is widely used in mice, with the potential of becoming routine in many species. Nevertheless, the epigenetic status of the targeted allele remains largely unexplored. Using GT-modified lines of the model plant Arabidopsis thaliana, we show that the DNA methylation profile of the targeted locus is changed following GT. This effect is non-directional as methylation can be either completely lost, maintained with minor alterations or show instability in the generations subsequent to GT. As DNA methylation is known to be involved in several cellular processes, GT-related alterations may result in unexpected or even unnoticed perturbations. Our analysis shows that GT may be used as a new tool for generating epialleles, for example, to study the role of gene body methylation. In addition, the analysis of DNA methylation at the targeted locus may be utilized to investigate the mechanism of GT, many aspects of which are still unknown.  相似文献   
22.

Background

A reduced exercise capacity is associated with increased morbidity and mortality in patients with advanced non-small cell lung cancer (NSCLC). Therapeutic exercise can be beneficial and neuromuscular electrical stimulation (NMES) of the quadriceps muscles may represent a practical approach. The primary aim of this study was to determine the acceptability of NMES of the quadriceps to patients with NSCLC used alongside palliative chemotherapy. Secondary aims explored aspects of safety and efficacy of NMES in this setting.

Methods

Patients with advanced NSCLC due to receive first-line palliative chemotherapy were randomized to usual care with or without NMES. They were asked to undertake 30 minute sessions of NMES, ideally daily, but as a minimum, three times weekly. For NMES to be considered acceptable, it was predetermined that ≥80% of patients should achieve this minimum level of adherence. Qualitative interviews were held with a subset of patients to explore factors influencing adherence. Safety was assessed according to the Common Terminology Criteria for Adverse Events. Quadriceps muscle strength, thigh lean mass, and physical activity level were assessed at baseline and after three cycles of chemotherapy.

Results

49 patients (28 male, median (IQR) age 69 (64−75) years) participated. Of 30 randomized to NMES, 18 were eligible for the primary endpoint, of whom 9 (50% [90% CI, 29 to 71]) met the minimum level of adherence. Adherence was enhanced by incorporating sessions into a daily routine and hindered by undesirable effects of chemotherapy. There were no serious adverse events related to NMES, nor significant differences in quadriceps muscle strength, thigh lean mass or physical activity level between groups.

Conclusions

NMES is not acceptable in this setting, nor was there a suggestion of benefit. The need remains to explore NMES in patients with cancer in other settings.

Trial Registration

Current Controlled Trials ISRCTN 42944026 www.controlled-trials.com/ISRCTN42944026  相似文献   
23.
24.

Background

Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment.

Methods

We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia.

Results

We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO.

Conclusions

These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.  相似文献   
25.
26.
27.
28.
Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma) are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. In this study we evaluate the clinical, neuropathological and mitochondrial genetic features of four unrelated patients with homozygous A467T mutations. One patient presented with the severe and lethal Alpers-Huttenlocher syndrome, which was confirmed on neuropathology, and was found to have a depletion of mitochondrial DNA (mtDNA). Of the remaining three patients, one presented with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), one with a phenotype in the Myoclonic Epilepsy, Myopathy and Sensory Ataxia (MEMSA) spectrum and one with Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO). All three had secondary accumulation of multiple mtDNA deletions. Complete sequence analysis of muscle mtDNA using the MitoChip resequencing chip in all four cases demonstrated significant variation in mtDNA, including a pathogenic MT-ND5 mutation in one patient. These data highlight the variable and overlapping clinical and neuropathological phenotypes and downstream molecular defects caused by the A467T mutation, which may result from factors such as the mtDNA genetic background, nuclear genetic modifiers and environmental stressors.  相似文献   
29.
An in‐depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab‐scale PBRs, a torus PBR and a thin flat‐panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat‐panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247–261, 2016  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号