首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4421篇
  免费   284篇
  国内免费   15篇
  2023年   11篇
  2022年   43篇
  2021年   92篇
  2020年   72篇
  2019年   81篇
  2018年   123篇
  2017年   107篇
  2016年   140篇
  2015年   267篇
  2014年   287篇
  2013年   321篇
  2012年   369篇
  2011年   361篇
  2010年   252篇
  2009年   194篇
  2008年   267篇
  2007年   266篇
  2006年   208篇
  2005年   209篇
  2004年   193篇
  2003年   181篇
  2002年   151篇
  2001年   57篇
  2000年   55篇
  1999年   45篇
  1998年   32篇
  1997年   23篇
  1996年   15篇
  1995年   15篇
  1994年   10篇
  1993年   10篇
  1992年   19篇
  1991年   14篇
  1990年   21篇
  1989年   12篇
  1988年   22篇
  1987年   18篇
  1986年   8篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1982年   9篇
  1979年   7篇
  1978年   9篇
  1975年   9篇
  1974年   8篇
  1973年   8篇
  1972年   11篇
  1971年   9篇
  1970年   9篇
排序方式: 共有4720条查询结果,搜索用时 171 毫秒
41.
42.
Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39), followed by social isolation. When these mice reached adulthood (post-natal day > 90), we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood.  相似文献   
43.
An obligatory anaerobic bacterium was isolated from a mediator-less microbial fuel cell using starch processing wastewater as the fuel and designated as EG3. The isolate was Gram-positive, motile and rod (2.8–3.0 μm long, 0.5–0.6 μm wide). The partial 16S rRNA gene sequence and analysis of the cellular fatty acids profile suggested that EG3 clusters with Clostridium sub-phylum and exhibited the highest similarity (98%) with Clostridium butyricum. The temperature and pH optimum for growth were 37°C and 7.0, respectively. The major products of glucose and glucose/Fe(O)OH metabolism were lactate, formate, butyrate, acetate, CO2and H2. Growth was faster at the initial phase and the cell yield was higher when the medium was supplemented with Fe(O)OH than without Fe(O)OH. These results suggest that Fe(III) ion is utilised as an electron sink. Cyclic voltammetry showed that Clostridium butyricum EG3 cells were electrochemically active. It is a novel characteristic of strict anaerobic Gram-positive bacteria.  相似文献   
44.
45.
Food Biophysics - Caffeic acid phenethyl ester (CAPE) has high cytotoxicity against various cancer cells but has low water solubility and poor bioavailability. The objective of this work was to...  相似文献   
46.
47.
Dysfunction of glutamate neurotransmission in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng) is exclusively expressed in the brain and mediates N‐methyl‐d ‐aspartate receptor (NMDAR) hypo‐function by regulating the intracellular calcium‐calmodulin (Ca2+‐CaM) pathway. Ng null mice (Ng–/– mice) demonstrate increased alcohol drinking compared to wild‐type mice, while also showing less tolerance to the effect of alcohol. To identify the molecular mechanism related to alcohol seeking, both in vivo microdialysis and label‐free quantification proteomics comparing Ng genotype and effects of alcohol treatment on the NAc are utilized. There is significant difference in glutamate and gamma‐aminobutyric acid (GABA) neurotransmission between genotypes; however, alcohol administration normalizes both glutamate and GABA levels in the NAc. Using label‐free proteomics, 427 protein expression changes are identified against alcohol treatment in the NAc among 4347 total proteins detected. Bioinformatics analyses reveal significant molecular differences in Ng null mice in response to acute alcohol treatment. Ingenuity pathway analysis found that the AKT network is altered significantly between genotypes, which may increase the sensitivity of alcohol in Ng null mice. The pharmacoproteomics results presented here illustrate a possible molecular basis of the alcohol sensitivity through Ng signaling in the NAc.  相似文献   
48.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
49.
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   
50.
Controlling the energetics and backbone order of semiconducting polymers is essential for the performance improvement of polymer‐based solar cells. The use of fluorine as the substituent for the backbone is known to effectively deepen the molecular orbital energy levels and coplanarize the backbone by noncovalent interactions with sulfur of the thiophene ring. In this work, novel semiconducting polymers are designed and synthesized based on difluoronaphthobisthiadiazole (FNTz) as a new family of naphthobisthiadiazole (NTz)–quaterthiophene copolymer systems, which are one of the highest performing polymers in solar cells. The effect of the fluorination position on the energetics and backbone order is systematically studied. It is found that the dependence of the solar cell fill factor on the active layer thickness is very sensitive to the fluorination position. It is thus further investigated and discussed how the structural features of the polymers influence the photovoltaic parameters as well as the diode characteristics and bimolecular recombination. Further, the polymer with fluorine on both the naphthobisthiadiazole and quaterthiophene moieties exhibits a quite high power conversion efficiency of 10.8% in solar cells in combination with a fullerene. It is believed that the results would offer new insights into the development of semiconducting polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号