首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   13篇
  328篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   7篇
  2014年   12篇
  2013年   16篇
  2012年   11篇
  2011年   20篇
  2010年   8篇
  2009年   6篇
  2008年   15篇
  2007年   14篇
  2006年   13篇
  2005年   9篇
  2004年   12篇
  2003年   17篇
  2002年   16篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
  1972年   4篇
  1971年   6篇
  1969年   4篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
41.
An effect of cimetidine on ECG records has been investigated in a group of 40 patients with gastric or duodenal ulcers and coexisting circulatory disorders. For this purpose ECG has been recorded with Holter's technique (Medilog 2000) together with ECG-recording using high amplifying technique. An intravenous injection of 200 mg of cimetidine produced in some of patients inhibition of the sinus rhythm atrio-ventricular conduction disturbances as well as changes in the end phase of ECG ventricular image. The authors suggest, that intravenous administration of cimetidine to patients with cardiac diseases should be monitored with ECG recording.  相似文献   
42.
Summary The probable conformations of two cyclic enkephalin analogs, DNS-cyclo[d-Dab-Gly-Trp-Leu] (I) and DNS-cyclo[d-Dab-Gly-Trp-d-Leu] (II) (DNS=dansyl), were determined by combining the results of NOE, vicinal coupling constant and fluorescence energy transfer measurements with theoretical calculations. The common feature of the conformations for both peptides is the presence of a β-turn at residues 2 and 3.  相似文献   
43.
The multibody contribution to the potential of mean force (PMF) of hydrophobic association of four methane molecules in water was investigated by means of umbrella-sampling molecular dynamics. Two systems were considered: (i). a trigonal pyramid with three methane molecules at contact distance forming a fixed base, the fourth molecule being placed on the top with variable distance from the base; and (ii). a regular uniformly expanding tetrahedron. Methane-methane distances as far as 12.5 A, i.e. beyond the second solvent-separated minimum of the PMF, were considered to address the baseline problem. In contrast to the small effect in the three-body case studied previously (Protein Sci 9 (2000) 1235), the multibody contribution was found to amount to approximately 0.2 kcal/mol per methane-methane pair, or approximately 25% of the depth of the contact minimum in the PMF. The main effect of the multibody contribution to the PMF is a reduction of the height of the barrier between the contact and solvent separated minima and a narrowing of the region of its maximum, while the region of the contact minimum is affected only weakly. The reduction of the barrier is due to four-body contributions. The cooperative contributions to the PMF agree very well with those computed from the molecular surface of the systems under consideration, which further supports earlier observations that the molecular surface can be used with good accuracy to describe the energetics of hydrophobic association.  相似文献   
44.
The length weight relationship was determined for Pseudocalanus minutus elongatus, Temora longicornis, Acartia bifilosa, and Acartia longiremis caught in the Pomeranian Bay (Baltic Sea). To determine the weights of the individuals a geometrical method was used and the formula.  相似文献   
45.
The duck hepatitis B virus (DHBV) envelope is comprised of two transmembrane (TM) proteins, the large (L) and the small (S), that assemble into virions and subviral particles. Secondary-structure predictions indicate that L and S have three alpha-helical, membrane-spanning domains, with TM1 predicted to act as the fusion peptide following endocytosis of DHBV into the hepatocyte. We used bafilomycin A1 during infection of primary duck hepatocytes to show that DHBV must be trafficked from the early to the late endosome for fusion to occur. Alanine substitution mutations in TM1 of L and S, which lowered TM1 hydrophobicity, were used to examine the role of TM1 in infectivity. The high hydrophobicity of the TM1 domain of L, but not of S, was shown to be essential for virus infection at a step downstream of receptor binding and virus internalization. Using wild-type and mutant synthetic peptides, we demonstrate that the hydrophobicity of this domain is required for the aggregation and the lipid mixing of phospholipid vesicles, supporting the role of TM1 as the fusion peptide. While lipid mixing occurred at pH 7, the kinetics of insertion of the fusion peptide was increased at pH 5, consistent with the location of DHBV in the late-endosome compartment and previous studies of the nonessential role of low pH for infectivity. Exchange of the TM1 of DHBV with that of hepatitis B virus yielded functional, infectious DHBV particles, suggesting that TM1 of all of the hepadnaviruses act similarly in the fusion mechanism.  相似文献   
46.
Reactions of two aromatic and two aliphatic amines with methyl 6-O-p-toluenesulfonyl-alpha-D-glucopyranoside or methyl 6-O-p-toluenesulfonyl-beta-D-glucopyranoside were performed on a micro-scale. The synthesis and preparative isolation methods have been developed for quaternary N-(methyl 2,3,4-tri-O-acetyl-6-deoxy-alpha- and -beta-D-glucopyranoside-6-yl)ammonium salts derived from three amines: trimethylamine, 2-methylpyridine, and pyridine. The reaction products were examined with 1H, 13C NMR spectroscopy. N-(Methyl 2,3,4-tri-O-acetyl-6-deoxy-beta-d-glucopyranoside-6-yl)trimethylammonium tosylate was additionally analyzed with X-ray crystallography.  相似文献   
47.
The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones involved in protein folding, aggregate prevention, and protein disaggregation. They consist of the substrate‐binding domain (SBD) that binds client substrates, and the nucleotide‐binding domain (NBD), whose cycles of nucleotide hydrolysis and exchange underpin the activity of the chaperone. To characterize the structure–function relationships that link the binding state of the NBD to its conformational behavior, we analyzed the dynamics of the NBD of the Hsp70 chaperone from Bos taurus (PDB 3C7N:B) by all‐atom canonical molecular dynamics simulations. It was found that essential motions within the NBD fall into three major classes: the mutual class, reflecting tendencies common to all binding states, and the ADP‐ and ATP‐unique classes, which reflect conformational trends that are unique to either the ADP‐ or ATP‐bound states, respectively. “Mutual” class motions generally describe “in‐plane” and/or “out‐of‐plane” (scissor‐like) rotation of the subdomains within the NBD. This result is consistent with experimental nuclear magnetic resonance data on the NBD. The “unique” class motions target specific regions on the NBD, usually surface loops or sites involved in nucleotide binding and are, therefore, expected to be involved in allostery and signal transmission. For all classes, and especially for those of the “unique” type, regions of enhanced mobility can be identified; these are termed “hot spots,” and their locations generally parallel those found by NMR spectroscopy. The presence of magnesium and potassium cations in the nucleotide‐binding pocket was also found to influence the dynamics of the NBD significantly. Proteins 2015; 83:282–299. © 2014 Wiley Periodicals, Inc.  相似文献   
48.
49.
Atrolysin A and jararhagin are class P-III snake venom metalloproteinases (SVMPs) with three distinct domains: a metalloproteinase, a disintegrin-like and a cysteine-rich. The metalloproteinase and the disintegrin-like domains of atrolysin A and jararhagin contain peptide sequences that interact with alpha2beta1 integrin and inhibit the platelet responses to collagen. Recently, the recombinant cysteine-rich domain of atrolysin A was shown to have similar effects, but the sequence(s) responsible for this is unknown. In this report, we demonstrate two complete peptide sequences from the homologous cysteine-rich domains of atrolysin A and jararhagin that inhibit both platelet aggregation by collagen and adhesion of alpha2-expressing K562 cells to this protein. In addition, the peptide effects on platelets do not seem to involve an inhibition of GPVI. These results identify, for the first time, sites in the cysteine-rich domain of SVMPs that inhibit cell responses to collagen and reveal the complexity of the potential biological effects of these enzymes with multifunctional domains.  相似文献   
50.
The reaction of [Mn{SSi(OBu(t))3}2(MeOH)4] with imidazole and its two methyl substituted derivatives leads to different types of heteroleptic manganese(II) thiolate complexes. Reaction with 1-methylimidazole gives the silanethiolate devoid of methanol but with two nitrogen ligands and thus central MnN(2)S(2) core. The reaction with imidazole leads to the methanol solvated complex with only one nitrogen ligand but manganese coordination sphere enlarged to MnO(2)NS(2) due to an O,S-chelation by tri-tert-butoxysilanethiolate ligand. Molecules of this compound interact through a set of N-H...(Me)O-H...S hydrogen bonds with methanol hydroxyl group being simultaneously acceptor and donor. With 2-methylimidazole the product is an assembly of two different neutral complexes joined again by hydrogen bonds, however, this time of N-H...S type. One of these complexes has the previously mentioned MnO(2)NS(2) core. The second neutral complex exhibits four donor atoms (MnNOS(2)core) derived from four independent ligands, i.e., two silanethiolate rests, one N-heterocyclic base and one alcohol. This structure presents similarities with a zinc-based alcohol dehydrogenase active site that have never been obtained before, including with other metals (Zn, Co). It may, therefore, be considered the first neutral structural model of liver alcohol dehydrogenase (LADH).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号