首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   846篇
  免费   42篇
  国内免费   2篇
  2023年   8篇
  2022年   7篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   10篇
  2017年   9篇
  2016年   9篇
  2015年   25篇
  2014年   32篇
  2013年   33篇
  2012年   53篇
  2011年   59篇
  2010年   30篇
  2009年   24篇
  2008年   47篇
  2007年   36篇
  2006年   34篇
  2005年   41篇
  2004年   35篇
  2003年   40篇
  2002年   32篇
  2001年   23篇
  2000年   29篇
  1999年   17篇
  1998年   14篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   30篇
  1991年   14篇
  1990年   12篇
  1989年   13篇
  1988年   13篇
  1987年   13篇
  1986年   12篇
  1985年   14篇
  1984年   9篇
  1983年   7篇
  1981年   3篇
  1979年   3篇
  1977年   3篇
  1975年   5篇
  1974年   3篇
  1973年   5篇
  1972年   4篇
  1971年   3篇
  1970年   7篇
  1957年   2篇
排序方式: 共有890条查询结果,搜索用时 15 毫秒
61.
Lysosomal cysteine cathepsin B participates in numerous diverse cellular processes. In acquiring its activity, the proregion, which blocks the substrate-binding site in the proenzyme, needs to be cleaved off. Here we demonstrate that polyanionic polysaccharides, glycosaminoglycans (GAGs), can accelerate the autocatalytic removal of the propeptide and subsequent activation of cathepsin B. We show that naturally occurring GAGs such as chondroitin sulfates and heparin, as well as the synthetic analog dextran sulfate, accelerate the processing in a concentration-dependent manner. Heparin oligosaccharides down to the size of tetrasaccharides were efficient in accelerating the procathepsin B processing, whereas disaccharides were without effect. Further, the ability of the GAGs to accelerate procathepsin B processing was sensitive to increasing NaCl concentrations, indicating that electrostatic interaction between the GAGs and procathepsin B are operative in the accelerating effect. Also the processing of the catalytic procathepsin B mutant by wild type cathepsin B was enhanced in the presence of GAGs, suggesting that GAGs induce a conformational change in procathepsin B, converting it into a better substrate. Site-directed mutagenesis showed that His(28), Lys(39), and Arg(40), located within the procathepsin B propeptide, have significant roles in the acceleration of procathepsin B activation induced by short GAGs. Because procathepsin B and GAGs often co-localize in vivo, we propose that GAGs may play a physiological role in the activation of procathepsin B.  相似文献   
62.
Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.  相似文献   
63.
Misregulation of NF-kappaB signaling leads to infectious, inflammatory, or autoimmune disorders. IkappaB kinase beta (IKKbeta) is an essential activator of NF-kappaB and is known to phosphorylate the NF-kappaB inhibitor, IkappaBalpha, allowing it to undergo ubiquitin-mediated proteasomal degradation. However, beyond IkappaBalpha, few additional IKKbeta substrates have been identified. Here we utilize a peptide library and bioinformatic approach to predict likely substrates of IKKbeta. This approach predicted Ser381 of the K63 deubiquitinase A20 as a likely site of IKKbeta phosphorylation. While A20 is a known negative regulator of innate immune signaling pathways, the mechanisms regulating the activity of A20 are poorly understood. We show that IKKbeta phosphorylates A20 in vitro and in vivo at serine 381, and we further show that this phosphorylation event increases the ability of A20 to inhibit the NF-kappaB signaling pathway. Phosphorylation of A20 by IKKbeta thus represents part of a novel feedback loop that regulates the duration of NF-kappaB signaling following activation of innate immune signaling pathways.  相似文献   
64.
The aim of the study was to compare an enzyme immunoassay method with shell vial cell culture method for detection of rotavirus in fecal specimens. In addition, the correlation between laboratory results and clinical scores of patients with gastroenteritis was evaluated. A total of 219 fecal specimens from children (ages 3 weeks to 5 years) with acute gastroenteritis submitted to pediatric emergency room were evaluated by both ELISA and shell vial cell culture. A Vesikari score was used for assessing the severity of the illness. Among 219 stool samples tested, 107 (48.9%) were determined to be positive. Two specimens were positive by shell vial cell culture method while they were ELISA negative. According to these results the calculated sensitivity, specificity, PPV, and NPV of ELISA were 98.1%, 100%, 100%, and 98.2%, respectively. The mean severity score for the 107 episodes of rotavirus diarrhoea was 11.0 +/- 3.6 compared to 4.5 +/- 1.9 for the 112 episodes of non-rotavirus diarrhea in the same population. Our study indicates that ELISA, which is easier to perform, faster and cheaper than cell culture methods may be suitable for routine diagnosis of rotavirus infections. The severity of rotavirus positive gastroenteritis was significantly higher than that of rotavirus negative patients.  相似文献   
65.
Cysteine proteases (cathepsins) play a pivotal role in various physiological processes, as well as in several diseases. In the immune response, maturation of major histocompatibility class II (MHC II) molecules and processing of antigens for further presentation by MHC II is tightly linked to the enzymes of the endosomal/lysosomal system, of which cysteine proteases constitute a major proportion. Furthermore, the process of autophagy provides access for cytosolic antigens to proteolysis by lysosomal cathepsins and subsequent MHC II presentation. Other specific functions of proteolytic enzymes associated with the immune response, such as activation of granzymes by cathepsin C in T-lymphocytes, are introduced and covered in this review.  相似文献   
66.
67.
In this study, R(+)‐α‐methylbenzylamine‐modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo‐second‐order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g?1. The magnetic chiral sorbent has a greater affinity for (S)‐(+)‐mandelic acid compared to (R)‐(?)‐mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD‐H column. Chirality 27:835–842, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
68.
Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.  相似文献   
69.
Many plant small RNAs are sequence-specific negative regulators of target mRNAs and/or chromatin. In angiosperms, the two most abundant endogenous small RNA populations are usually 21-nucleotide microRNAs (miRNAs) and 24-nucleotide heterochromatic short interfering RNAs (siRNAs). Heterochromatic siRNAs are derived from repetitive regions and reinforce DNA methylation at targeted loci. The existence and extent of heterochromatic siRNAs in other land plant lineages has been unclear. Using small RNA-sequencing (RNA-seq) of the moss Physcomitrella patens, we identified 1090 loci that produce mostly 23- to 24-nucleotide siRNAs. These loci are mostly in intergenic regions with dense DNA methylation. Accumulation of siRNAs from these loci depends upon P. patens homologs of DICER-LIKE3 (DCL3), RNA-DEPENDENT RNA POLYMERASE2, and the largest subunit of DNA-DEPENDENT RNA POLYMERASE IV, with the largest subunit of a Pol V homolog contributing to expression at a smaller subset of the loci. A MINIMAL DICER-LIKE (mDCL) gene, which lacks the N-terminal helicase domain typical of DCL proteins, is specifically required for 23-nucleotide siRNA accumulation. We conclude that heterochromatic siRNAs, and their biogenesis pathways, are largely identical between angiosperms and P. patens, with the notable exception of the P. patens-specific use of mDCL to produce 23-nucleotide siRNAs.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号