首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2007年   1篇
  2006年   3篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
排序方式: 共有56条查询结果,搜索用时 343 毫秒
21.
Among the Mediterranean plexaurids, four species are endemic and despite their ecological importance, comprehensive studies on the evolution and biogeography of these organisms are lacking. Here, we explore the mitogenomic variability of two endemic, ecologically important Mediterranean Paramuricea species. We assess their phylogenetic relationships and provide first insights into their evolution and biogeography. Complete mitogenome sequences of Paramuricea clavata and Paramuricea macrospina were obtained using long-range PCR, primer-walking and Sanger sequencing. For an enlarged sample of Paramuricea species, maximum likelihood and Bayesian phylogenetic trees of the mitochondrial gene mtMutS were obtained and used to study the biogeographic history of Paramuricea through a statistical Dispersal-Vicariance (S-DIVA) method and a Dispersal Extinction Cladogenesis (DEC) model. Divergence time was estimated under strict and relaxed molecular clock models in BEAST using published octocoral mutation rates. Our results revealed high nucleotide diversity (2.6%) among the two Mediterranean endemics; the highest mutation rates were found in the mtMutS, Nad4 and Nad5. In addition, we found length polymorphisms in several intergenic regions and differences in mitochondrial genome size. The red gorgonian P. clavata was closely related to the Eastern Atlantic Paramuricea grayi rather than its Mediterranean congener, P. macrospina. Our biogeographic results provide evidence for the independent speciation of the Mediterranean species and point to a Miocene origin of the two endemics, highlighting the role played by the Messinian Salinity Crisis in the evolutionary history of Mediterranean organisms.  相似文献   
22.
Cyclic ADP-ribose (cADPR) is an intracellular calcium (Ca(2+)(i)) mobilizer involved in fundamental cell functions from protists to higher plants and mammals. Biochemical similarities between the drought-signaling cascade in plants and the temperature-sensing pathway in marine sponges suggest an ancient evolutionary origin of a signaling cascade involving the phytohormone abscisic acid (ABA), cADPR, and Ca(2+)(i). In Eudendrium racemosum (Hydrozoa, Cnidaria), exogenously added ABA stimulated ADP-ribosyl cyclase activity via a protein kinase A (PKA)-mediated phosphorylation and increased regeneration in the dark to levels observed under light conditions. Light stimulated endogenous ABA synthesis, which was conversely inhibited by the inhibitor of plant ABA synthesis Fluridone. The signal cascade of light-induced regeneration uncovered in E. racemosum: light --> increasing ABA --> PKA --> cyclase activation --> increasing [cADPR](i) --> increasing [Ca(2+)](i) --> regeneration is the first report of a complete signaling pathway in Eumetazoa involving a phytohormone.  相似文献   
23.
The presence of Ca(2+)-dependent, heat-stress-activated nitric oxide synthase (NOS) activity in peculiarly shaped, fusiform, and dendritic sponge cells is described for the first time. The NOS activity was evidenced evaluating the conversion of radioactive citrulline from [(14)C]arginine in intact cells from two different species that are phylogenetically unrelated in the class of Demospongiae: Axinella polypoides and Petrosia ficiformis. The production of nitrogen monoxide (NO) was confirmed by electron paramagnetic resonance analysis, and the histochemistry technique of NADPH diaphorase showed a specific localization of NOS activity in a particular network of dendritic cells in the sponge parenchyma. Sponges are the most primitive metazoan group; their evolution dates back 600 million years. The presence of environmental stress-activated NOS activity in these organisms may prove to be the most ancient NO-dependent signaling network in the animal kingdom.  相似文献   
24.
25.
Many marine and freshwater organisms are rocky bottom dwellers, and the mineralogical composition of the substratum is known to potentially condition their biology and ecology. In this work, we propose the use of 3D sponge cellular aggregates, called primmorphs, as suitable models for a multidisciplinary study of the mechanisms which regulate the biological responses triggered by the contact with different inorganic substrata. In our experiments, primmorphs obtained from the marine sponge Petrosia ficiformis (Poiret, 1789) were reared on calcium carbonate or on quartzitic substrata, respectively, and their morphological development was described. In parallel, the quantitative expression levels of two genes, silicatein and heat shock protein 70 (HSP70), were evaluated. The first gene is strictly correlated to spiculogenesis and sponge growth, while the second is an important indicator of stress. The results achieved with this in vitro model clearly demonstrate that quartzitic substrata determine the increase of silicatein gene expression, a lower expression of HSP70 gene, and a remarkable difference in primmorphs morphology compared to the analogous samples grown on marble.  相似文献   
26.
The need to produce bioactive compounds from marine sponges leads several groups of research to the culture of primmorphs from different species, which are generally maintained in aquaria for long time before processing. Here we present a study where the importance of several parameters on primmorphs production from the symbiotic sponge Petrosia ficiformis has been evaluated: (i) the sterility of sea water, (ii) the maintenance in aquarium before processing, (iii) the seasonal cycle. Sterility of sea water does not improve primmorphs production in this species. The maintenance of sponges in aquaria before processing negatively affects cell cultures. Regarding seasonality, it is evident that both the number and the size of primmorphs can deeply change depending on the period of the year the sponge is collected. April and July are the months that lead to the highest number of primmorphs, May and June are the months that lead to their biggest sizes. Possible relationships of these results with the life cycle of P. ficiformis are discussed.  相似文献   
27.
In the Mediterranean Sea, as well as in other parts of the word, intense bottom trawling threatens deep and mesophotic assemblages, compromising mainly the survivorship of erect organisms and of the habitat complexity they shape. Protection of species able to affect their habitats, by increasing spatial complexity and enhancing interspecific interactions, is crucial for biodiversity conservation. It is urgent to highlight the occurrence of those species which act as ecosystem engineers and/or habitat former to enhance awareness on their ecological role and to develop focused conservation strategies. Lytocarpia myriophyllum is the largest Leptomedusan hydroid of the Mediterranean Sea, with colonies up to 1 m high, and the most abundant Aglaopheniid in the eastern part of the North Atlantic Ocean. This species creates wide forests on soft bottoms stabilizing sediments, providing refuge and food for several other associated organisms and could be defined both a habitat former and an ecosystem engineer. Thanks to trimix diving here we report on new insights on the morphological, biological and ecological features of L. myriophyllum meadows from the Mediterranean Sea furnishing a baseline for protection plans focused on these facies. This work demonstrates that direct studies of mesophotic habitats allow to collect far more detailed information than grabs, ROVs, or towed camera arrays and highlights the urgent need to redefine the vertical extension of several marine protected areas.  相似文献   
28.
The possibility to cryopreserve cells allows for wide opportunities of flexible handling of cell cultures from different sponge species. Primmorphs model, a multicellular 3D aggregate formed by dissociated sponge cells, is considered one of the best approaches to establish sponge cell culture but, in spite of the available protocols for freezing sponge cells, there is no information regarding the ability of the latter to form primmorphs after thawing. In the present work, we demonstrate that, after a freezing and thawing cycle using dissociated Petrosia ficiformis cells as a model, cells viability was high but it was not possible to obtain primmorphs. The same protocol for cryopreservation was then used to directly freeze primmorphs. In this second case, after thawing, viability and the cellular proliferative level were similar to unfrozen standard primmorphs. Spiculogenesis in thawed primmorphs was evaluated by quantifying the silicatein gene expression level and by assaying the silica amount in the newly formed spicules, then compared with the correspondent values obtained in standard unfrozen primmorphs. Results indicate that the freezing cycle does not affect the spiculogenesis rate. Finally, the expression level of heat shock protein 70, a well-known stress marker, was assayed and the results showed no differences between frozen and unfrozen samples. These findings are likely to promote relevant improvements in sponge cell culture technique, allowing for a worldwide exchange of living biological material, paving the way for cell banking of Porifera.  相似文献   
29.
Mediterranean gorgonian forests are threatened by several human activities and are affected by climatic anomalies that have led to mass mortality events in recent decades. The ecological role of these habitats and the possible consequence of their loss are poorly understood. Effects of gorgonians on the recruitment of epibenthic organisms were investigated by manipulating presence of gorgonians on experimental panels at 24 m depth, for Eunicella cavolinii, and at 40 m depth, for Paramuricea clavata, at two sites: Tavolara Island (Tyrrhenian Sea) and Portofino Promontory (Ligurian Sea). After 4 months, the most abundant taxa on the panels were encrusting green algae, erect red algae and crustose coralline algae at 24 m depth and encrusting brown algae and erect red algae at 40 m depth. Assemblages on the panels were significantly affected by the presence of the gorgonians, although effects varied across sites and between gorgonian species. Species diversity and evenness were lower on panels with gorgonian branches. Growth of erect algae and recruitment of serpulid polychaetes were also affected by the presence of the gorgonians, primarily at Tavolara. Crustose coralline algae and erect sponges were more abundant on E. cavolinii panels at 24 m depth, while encrusting bryozoans were more abundant on P. clavata panels at 40 m depth. Effects of gorgonians on recruited assemblages could be due to microscale modification of hydrodynamics and sediment deposition rate, or by a shading effect reducing light intensity. Gorgonians may also intercept settling propagules, compete for food with the filter-feeders and/or for space by producing allelochemicals. Presence of gorgonians mainly limits the growth of erect algae and enhances the abundance of encrusting algae and sessile invertebrates. Therefore, the gorgonian disappearances may cause a shift from assemblages characterised by crustose coralline algae to filamentous algae assemblages, decreasing complexity and resilience of coralligenous bioconstructions.  相似文献   
30.
We report here the complete cDNA sequence of a nonfibrillar collagen (COLch) isolated from the marine sponge Chondrosia reniformis, Nardo 1847 using a PCR approach. COLch cDNA consists of 2,563 nucleotides and includes a 5′ untranslated region (UTR) of 136 nucleotides, a 3′ UTR of 198 nucleotides, and an open reading frame encoding for a protein of 743 amino acids with an estimated M r of 72.12 kDa. The phylogenetic analysis on the deduced amino acid sequence of C-terminal end shows that the isolated sequence belongs to the short-chain spongin-like collagen subfamily, a nonfibrillar group of invertebrate collagens similar to type IV collagen. In situ hybridization analysis shows higher expression of COLch mRNA in the cortical part than in the inner part of the sponge. Therefore, COLch seems to be involved in the formation of C. reniformis ectosome, where it could play a key role in the attachment to the rocky substrata and in the selective sediment incorporation typical of these organisms. qPCR analysis of COLch mRNA level, performed on C. reniformis tissue culture models (fragmorphs), also demonstrates that this matrix protein is directly involved in sponge healing processes and that soluble silicates positively regulate its expression. These findings confirm the essential role of silicon in the fibrogenesis process also in lower invertebrates, and they should give a tool for a sustainable production of marine collagen in sponge mariculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号