首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   63篇
  2023年   4篇
  2022年   15篇
  2021年   21篇
  2020年   11篇
  2019年   17篇
  2018年   14篇
  2017年   11篇
  2016年   32篇
  2015年   46篇
  2014年   56篇
  2013年   101篇
  2012年   94篇
  2011年   81篇
  2010年   52篇
  2009年   62篇
  2008年   62篇
  2007年   55篇
  2006年   75篇
  2005年   72篇
  2004年   63篇
  2003年   67篇
  2002年   44篇
  2001年   11篇
  2000年   8篇
  1999年   14篇
  1998年   10篇
  1997年   16篇
  1996年   10篇
  1995年   11篇
  1994年   10篇
  1993年   5篇
  1992年   11篇
  1991年   11篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1985年   6篇
  1984年   18篇
  1983年   4篇
  1982年   7篇
  1980年   3篇
  1978年   3篇
  1977年   4篇
  1967年   3篇
  1965年   5篇
  1964年   3篇
  1917年   3篇
  1916年   3篇
  1915年   3篇
排序方式: 共有1291条查询结果,搜索用时 31 毫秒
991.
In this work, we have devised an intracellular immunization strategy for the expression in high amounts of ATF-saporin, a targeted chimeric toxin constituted by the ATF receptor binding domain of human urokinase and the plant ribosome-inactivating protein saporin, which has been shown to be highly cytotoxic to target cells. This strategy may allow the production of highly toxic secretory proteins in eukaryotic cells, avoiding cell suicide caused by autointoxication. The procedure consists of equipping host cells with cytosolic neutralizing antibodies directed toward the toxic domain of the heterologous polypeptide. We show that this intracellular immunization is essential for the synthesis of correctly folded, biologically active ATF-SAP in the high amounts needed to investigate its in vivo anti-metastatic potential. Such a strategy should be generally useful for the production of toxic molecules of therapeutic value whose folding and maturation require transit through the eukaryotic secretory pathway. Fabbrini, M. S., Carpani, D., Soria, M. R., Ceriotti, A. Cytosolic immunization allows the expression of preATF-saporin chimeric toxin in eukaryotic cells.  相似文献   
992.
993.
Effects of N-glycosylation on the folding and structure of plant proteins   总被引:3,自引:0,他引:3  
The synthesis of many of the proteins that are translocated into the endoplasmic reticulum is accompanied by the co-translational attachment of preformed oligosaccharide chains to certain Asn residues. These glycoproteins can play a variety of roles in the mature proteins, including the one of stabilizing the protein and protecting the polypeptide backbone from the action of proteases. In addition, they can have a crucial function during the process of polypeptide folding, when aggregation with other proteins would hamper the acquisition of the native conformation. Their influence on protein folding can be direct, or mediated by interactions with endoplasmic reticulum-located molecular chaperones. The elucidation of the mechanisms that govern glycoprotein folding in the plant endoplasmic reticulum should contribute to the understanding of how much plant cells rely on glycan chains to achieve the efficient folding of many proteins under diverse environmental conditions. In addition, a better knowledge of the level of conservation of the in vivo folding mechanisms will be important for the exploitation of plant cells in the production of heterologous glycoproteins.Keywords: Calnexin, calreticulin, endoplasmic reticulum, glucose trimming, glycoprotein stability.   相似文献   
994.
Tryptophan is an essential amino acid precursor of neurotransmitter serotonin and triptamine. During its metabolism, indole‐3‐acetic acid (IAA) is generated; this substance presents both antioxidant and prooxidant effects in different biological systems in addition to hipoglicemic effects. To date, electroencephalography (EEG) has been used to evaluate the temporal effect of several substances in neurotransmission. The goal of this study was to characterize the effect of IAA in the brain by analysing the EEG signal and evaluate the oxidative status by means of biochemical parameters. The EEG was acquired by using a noninvasive method, and the brain electric signal was analysed by advanced digital signal processing techniques to determinate the energy signal filtered in different band frequencies. Furthermore, the oxidative status of the brain was investigated by measuring the activity of antioxidant enzymes and lipid peroxidation as well as blood glucose rates of the animals treated with different doses of IAA. Our results showed the relationship of IAA administration with changes in EEG signals. The oxidative status of the brain was modified by IAA after 14 days of treatment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
995.
Abasic sites represent the most frequent lesion in DNA. Since several events generating abasic sites concern guanines, this damage is particularly important in quadruplex forming G-rich sequences, many of which are believed to be involved in several biological roles. However, the effects of abasic sites in sequences forming quadruplexes have been poorly studied. Here, we investigated the effects of abasic site mimics on structural, thermodynamic and kinetic properties of parallel quadruplexes. Investigation concerned five oligodeoxynucleotides based on the sequence d(TGGGGGT), in which all guanines have been replaced, one at a time, by an abasic site mimic (dS). All sequences preserve their ability to form quadruplexes; however, both spectroscopic and kinetic experiments point to sequence-dependent different effects on the structural flexibility and stability. Sequences d(TSGGGGT) and d(TGGGGST) form quite stable quadruplexes; however, for the other sequences, the introduction of the dS in proximity of the 3′-end decreases the stability more considerably than the 5′-end. Noteworthy, sequence d(TGSGGGT) forms a quadruplex where dS does not hamper the stacking between the G-tetrads adjacent to it. These results strongly argue for the central role of apurinic/apyrimidinic site damages and they encourage the production of further studies to better delineate the consequences of their presence in the biological relevant regions of the genome.  相似文献   
996.
997.
Foreword     
  相似文献   
998.
Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation.  相似文献   
999.
1000.

Background

Patients on warfarin therapy undergo invasive and expensive checks for the coagulability of their blood. No information on coagulation levels is currently available between two controls.

Methodology

A method was developed to determine warfarin in oral fluid by HPLC and fluorimetric detection. The chromatographic separation was performed at room temperature on a C-18 reversed-phase column, 65% PBS and 35% methanol mobile phase, flow rate 0.7 mL/min, injection volume 25 µL, excitation wavelength 310 nm, emission wavelength 400 nm.

Findings

The method was free from interference and matrix effect, linear in the range 0.2–100 ng/mL, with a detection limit of 0.2 ng/mL. Its coefficient of variation was <3% for intra-day measurements and <5% for inter-day measurements. The average concentration of warfarin in the oral fluid of 50 patients was 2.5±1.6 ng/mL (range 0.8–7.6 ng/mL). Dosage was not correlated to INR (r = −0.03, p = 0.85) but positively correlated to warfarin concentration in the oral fluid (r = 0.39, p = 0.006). The correlation between warfarin concentration and pH in the oral fluid (r = 0.37, p = 0.009) confirmed the importance of pH in regulating the drug transfer from blood. A correlation between warfarin concentration in the oral fluid and INR was only found in samples with pH values ≥7.2 (r = 0.84, p = 0.004).

Conclusions

Warfarin diffuses from blood to oral fluid. The method allows to measure its concentration in this matrix and to analyze correlations with INR and other parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号