首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1315篇
  免费   102篇
  2023年   7篇
  2022年   12篇
  2021年   25篇
  2020年   11篇
  2019年   18篇
  2018年   30篇
  2017年   15篇
  2016年   35篇
  2015年   68篇
  2014年   72篇
  2013年   78篇
  2012年   107篇
  2011年   83篇
  2010年   56篇
  2009年   53篇
  2008年   67篇
  2007年   73篇
  2006年   60篇
  2005年   68篇
  2004年   54篇
  2003年   47篇
  2002年   64篇
  2001年   11篇
  2000年   15篇
  1999年   7篇
  1998年   11篇
  1996年   18篇
  1995年   6篇
  1994年   11篇
  1993年   8篇
  1992年   18篇
  1991年   11篇
  1990年   6篇
  1989年   12篇
  1987年   7篇
  1986年   10篇
  1985年   16篇
  1984年   14篇
  1983年   7篇
  1981年   14篇
  1978年   8篇
  1976年   8篇
  1975年   5篇
  1974年   11篇
  1973年   13篇
  1971年   6篇
  1970年   5篇
  1969年   8篇
  1968年   9篇
  1966年   7篇
排序方式: 共有1417条查询结果,搜索用时 140 毫秒
71.
K63‐ and Met1‐linked ubiquitylation are crucial posttranslational modifications for TNF receptor signaling. These non‐degradative ubiquitylations are counteracted by deubiquitinases (DUBs), such as the enzyme CYLD, resulting in an appropriate signal strength, but the regulation of this process remains incompletely understood. Here, we describe an interaction partner of CYLD, SPATA2, which we identified by a mass spectrometry screen. We find that SPATA2 interacts via its PUB domain with CYLD, while a PUB interaction motif (PIM) of SPATA2 interacts with the PUB domain of the LUBAC component HOIP. SPATA2 is required for the recruitment of CYLD to the TNF receptor signaling complex upon TNFR stimulation. Moreover, SPATA2 acts as an allosteric activator for the K63‐ and M1‐deubiquitinase activity of CYLD. In consequence, SPATA2 substantially attenuates TNF‐induced NF‐κB and MAPK signaling. Conversely, SPATA2 is required for TNF‐induced complex II formation, caspase activation, and apoptosis. Thus, this study identifies SPATA2 as an important factor in the TNF signaling pathway with a substantial role for the effects mediated by the cytokine.  相似文献   
72.
73.
In order to estimate microalgal carbon assimilation or production of Chlorella fusca cultures based on electron transport rate (ETR) as in vivo chlorophyll a fluorescence, it is necessary to determine the photosynthetic yield and the absorbed quanta by measuring the incident irradiance and the fraction of absorbed light, i.e., absorptance or absorption coefficient in the photosynthetic active radiation (PAR) region of the spectra. Due to difficulties associated with the determination of light absorption, ETR is commonly expressed as relative units (rETR) although this is not a good estimator of the photosynthetic production since photobiological responses depend on the absorbed light. The quantitative filter technique (QFT) is commonly used to measure the absorbed quanta of cells retained on a filter (AbQf) as estimator of the absorbed quanta of cell suspensions (AbQs) determined by using integrating spheres. In this study, light attenuation of thin-layer cell suspensions is determined by using a measuring system designed to reduce the scattering. The light attenuation is related to the absorptance as the fraction of absorbed light by both indoor and outdoor C. fusca cultures of different cell densities. A linear relation between AbQf and AbQs (R 2?=?0.9902, p?<?0.01) was observed, AbQf?=?1.98?×?AbQs, being 1.98 an amplification factor to convert AbQs values into AbQf ones. On the other hand, depending on the culture system, the convenience of the use of the absorptance, light absorption or specific light absorption coefficient expressed per area (thin-layer cascade or flat panel cultivators), volume (cylindrical and tubular photobioreactors), or chlorophyll units (any type of cultivation system) is discussed. The procedure for the measurement of light absorption presented in this study for C. fusca could be applied in other phytoplankton groups. The absorbed quanta as determined in this study can be used to express absolute ETR instead of relative ETR, since the first one provides much more relevant photobiological information of microalgae culture systems.  相似文献   
74.
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome‐scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single‐molecule real‐time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi‐C‐based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein‐coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.  相似文献   
75.
Heparin affin regulatory peptide (HARP) is an 18 kDa heparin-binding protein that plays a key role in tumor growth. We showed previously that the synthetic peptide P(111-136) composed of the last 26 HARP amino acids inhibited HARP-induced mitogenesis. Here, to identify the exact molecular domain involved in HARP inhibition, we investigated the effect of the shorter basic peptide P(122-131) on DU145 cells, which express HARP and its receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta). P(122-131) was not cytotoxic; it dose-dependently inhibited anchorage-independent growth of DU145 cells. Binding studies using biotinylated P(122-131) indicated that this peptide interfered with HARP binding to DU145 cells. Investigation of the mechanisms involved suggested interference, under anchorage-independent conditions, of P(122-131) with a HARP autocrine loop in an RPTPbeta/zeta-dependent fashion. Thus, P(122-131) may hold potential for the treatment of disorders involving RPTPbeta/zeta.  相似文献   
76.
We describe here the results of genetic screens for Caenorhabditis elegans mutants in which a single neuronal fate decision is inappropriately executed. In wild-type animals, the two morphologically bilaterally symmetric gustatory neurons ASE left (ASEL) and ASE right (ASER) undergo a left/right asymmetric diversification in cell fate, manifested by the differential expression of a class of putative chemoreceptors and neuropeptides. Using single cell-specific gfp reporters and screening through a total of almost 120,000 haploid genomes, we isolated 161 mutants that define at least six different classes of mutant phenotypes in which ASEL/R fate is disrupted. Each mutant phenotypic class encompasses one to nine different complementation groups. Besides many alleles of 10 previously described genes, we have identified at least 16 novel "lsy" genes ("laterally symmetric"). Among mutations in known genes, we retrieved four alleles of the miRNA lsy-6 and a gain-of-function mutation in the 3'-UTR of a target of lsy-6, the cog-1 homeobox gene. Using newly found temperature-sensitive alleles of cog-1, we determined that a bistable feedback loop controlling ASEL vs. ASER fate, of which cog-1 is a component, is only transiently required to initiate but not to maintain ASEL and ASER fate. Taken together, our mutant screens identified a broad catalog of genes whose molecular characterization is expected to provide more insight into the complex genetic architecture of a left/right asymmetric neuronal cell fate decision.  相似文献   
77.
Although peroxynitrite stimulates apoptosis in many cell types, whether peroxynitrite acts directly as an oxidant or the induction of apoptosis is because of the radicals derived from peroxynitrite decomposition remains unknown. Before undergoing apoptosis because of trophic factor deprivation, primary motor neuron cultures become immunoreactive for nitrotyrosine. We show here using tyrosine-containing peptides that free radical processes mediated by peroxynitrite decomposition products were required for triggering apoptosis in primary motor neurons and in PC12 cells cultures. The same concentrations of tyrosine-containing peptides required to prevent the nitration and apoptosis of motor neurons induced by trophic factor deprivation and of PC12 cells induced by peroxynitrite also prevented peroxynitrite-mediated nitration of motor neurons, brain homogenates, and PC12 cells. The heat shock protein 90 chaperone was nitrated in both trophic factor-deprived motor neurons and PC12 cells incubated with peroxynitrite. Tyrosine-containing peptides did not affect the induction of PC12 cell death by hydrogen peroxide. Tyrosine-containing peptides should protect by scavenging peroxynitrite-derived radicals and not by direct reactions with peroxynitrite as they neither increase the rate of peroxynitrite decomposition nor decrease the bimolecular peroxynitrite-mediated oxidation of thiols. These results reveal an important role for free radical-mediated nitration of tyrosine residues, in apoptosis induced by endogenously produced and exogenously added peroxynitrite; moreover, tyrosine-containing peptides may offer a novel strategy to neutralize the toxic effects of peroxynitrite.  相似文献   
78.
O-linked fucose modification is rare and has been shown to occur almost exclusively within epidermal growth factor (EGF)-like modules. We have found that the EGF-CFC family member human Cripto-1 (CR) is modified with fucose and through a combination of peptide mapping, mass spectrometry, and sequence analysis localized the site of attachment to Thr-88. The identification of a fucose modification on human CR within its EGF-like domain and the presence of a consensus fucosylation site within all EGF-CFC family members suggest that this is a biologically important modification in CR, which functionally distinguishes it from the EGF ligands that bind the type 1 erbB growth factor receptors. A single CR point mutation, Thr-88 --> Ala, results in a form of the protein that is not fucosylated and has substantially weaker activity in cell-based CR/Nodal signaling assays, indicating that fucosylation is functionally important for CR to facilitate Nodal signaling.  相似文献   
79.
The melanocortins (alpha-melanocyte-stimulating hormone and adrenocorticotropin) act on epidermal melanocytes to increase melanogenesis, the eumelanin/pheomelanin ratio and dendricity. These actions are mediated by the heptahelical melanocortin 1 receptor (MC1R), positively coupled to adenylyl cyclase. Gain-of-function mouse Mc1r alleles are associated with a dark, eumelanic coat. Conversely, loss-of-function variants, or overexpression of agouti, a natural melanocortin antagonist, yield yellow, pheomelanic furs. In humans, loss-of-function MC1R variants are associated with fair skin, poor tanning, propensity to freckle and increased skin cancer risk. Therefore, MC1R is a key regulator of mammalian pigmentation. Several observations such as induction of constitutive pigmentation in amelanotic mouse melanoma cells following expression of MC1R indicate that the receptor might display agonist-independent activity. We report a systematic and comparative study of MC1R and Mc1r constitutive activity. We show that expression of MC1R in heterologous systems leads to an agonist-independent increase in cyclic adenosine monophophate (cAMP). Basal signalling is a function of receptor expression and is two to fourfold higher for MC1R than for Mc1r. Moreover, it is observed in human melanoma cells over-expressing the MC1R. Constitutive signalling is abolished or reduced by point mutations of MC1R impairing the response to agonists, and is only doubled by the Lys94Glu mutation, mimicking the constitutively active mouse E(so-3J) allele. Stable or transient expression of wild-type MC1R, but not of loss-of-function mutants, potently stimulates forskolin activation of adenylyl cyclase, a common feature of constitutively active Gs-coupled receptors. Therefore, human MC1R displays a strong agonist-independent constitutive activity.  相似文献   
80.
Molecular epidemiology applied to the study of nosocomial infection has been fundamental in formulating and evaluating control methods. From patients in a level 3 Bogota hospital, Klebsiella pneumoniae samples were isolated that produced extended-spectrum beta-lactamases (ESBL). Each of 15 isolates was characterized microbiologically and by molecular characters realized by pulsed field gel electrophoresis (PFGE) and by repetitive-DNA sequences amplification (REP-PCR). Antimicrobial susceptibility and ESBL production was determined in accordance with NCCLS guidelines. The beta-lactamases were evaluated by isoelectric-focusing and PCR. Twelve (80%) of the isolates were associated with nosocomial infection; 11 of them were from intensive care units. The antibiotic susceptibility displayed 13 resistance patterns--87% presented co-resistance to amikacin, 53% to gentamicin, 33% to ciprofloxacin, 40% to cefepime, 67% to piperacillin/tazobactam, 60% to trimethoprim/sulfamethoxazole and 47% to chloranphenicol. All were sensitive to imipenem. Production of TEM and SHV beta-lactamases was detected simultaneously in most isolates by isoelectric focusing and 93.3% produced a ceftazidimase of pl 8.2 of the SHV-5 type. The 15 isolates were grouped into 11 and 12 electrophoretic patterns by PFGE and REP-PCR, respectively. The degree of genetic variability indicated an endogenous origin of the nosocomial infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号