首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4641篇
  免费   320篇
  国内免费   2篇
  2023年   26篇
  2022年   53篇
  2021年   109篇
  2020年   70篇
  2019年   97篇
  2018年   134篇
  2017年   104篇
  2016年   158篇
  2015年   239篇
  2014年   224篇
  2013年   303篇
  2012年   316篇
  2011年   301篇
  2010年   203篇
  2009年   190篇
  2008年   228篇
  2007年   214篇
  2006年   215篇
  2005年   189篇
  2004年   178篇
  2003年   148篇
  2002年   162篇
  2001年   89篇
  2000年   83篇
  1999年   77篇
  1998年   34篇
  1997年   32篇
  1996年   42篇
  1995年   42篇
  1994年   28篇
  1993年   30篇
  1992年   47篇
  1991年   44篇
  1990年   36篇
  1989年   44篇
  1988年   34篇
  1987年   40篇
  1986年   43篇
  1985年   36篇
  1984年   22篇
  1981年   23篇
  1979年   18篇
  1978年   21篇
  1977年   17篇
  1976年   18篇
  1975年   17篇
  1974年   27篇
  1973年   23篇
  1969年   17篇
  1968年   19篇
排序方式: 共有4963条查询结果,搜索用时 15 毫秒
991.
Acute myeloid leukaemia (AML) comprises a heterogeneous group of hematologic neoplasms characterized by diverse combinations of genetic, phenotypic and clinical features representing a major challenge for the development of targeted therapies. Metabolic reprogramming, mainly driven by deregulation of the nutrient‐sensing pathways as AMPK, mTOR and PI3K/AKT, has been associated with cancer cells, including AML cells, survival and proliferation. Nevertheless, the role of these metabolic adaptations on the AML pathogenesis is still controversial. In this work, the metabolic status and the respective metabolic networks operating in different AML cells (NB‐4, HL‐60 and KG‐1) and their impact on autophagy and survival was characterized. Data show that whereas KG‐1 cells exhibited preferential mitochondrial oxidative phosphorylation metabolism with constitutive co‐activation of AMPK and mTORC1 associated with increased autophagy, NB‐4 and HL‐60 cells displayed a dependent glycolytic profile mainly associated with AKT/mTORC1 activation and low autophagy flux. Inhibition of AKT is disclosed as a promising therapeutical target in some scenarios while inhibition of AMPK and mTORC1 has no major impact on KG‐1 cells’ survival. The results highlight an exclusive metabolic profile for each tested AML cells and its impact on determination of the anti‐leukaemia efficacy and on personalized combinatory therapy with conventional and targeted agents.  相似文献   
992.
Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long‐term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO2 during so‐called “priming effects”. Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross‐continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 μmol CO2 m?2 s?1) than at Wytham (2.7 μmol CO2 m?2 s?1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.  相似文献   
993.
To truly understand the current status of tropical diversity and to forecast future trends, we need to increase emphasis on the study of biodiversity in rural landscapes that are actively managed or modified by people. We present an integrated landscape approach to promote research in human-modified landscapes that includes the effects of landscape structure and dynamics on conservation of biodiversity, provision of ecosystem services, and sustainability of rural livelihoods. We propose research priorities encompassing three major areas: biodiversity, human–environment interactions, and restoration ecology. We highlight key areas where we lack knowledge and where additional understanding is most urgent for promoting conservation and sustaining rural livelihoods. Finally, we recommend participatory and multidisciplinary approaches in research and management. Lasting conservation efforts demand new alliances among conservation biologists, agroecologists, agronomists, farmers, indigenous peoples, rural social movements, foresters, social scientists, and land managers to collaborate in research, co-design conservation programs and policies, and manage human-modified landscapes in ways that enhance biodiversity conservation and promote sustainable livelihoods.  相似文献   
994.

Key message

Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean.

Abstract

Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.
  相似文献   
995.
Aims Invasive plants modify the structure and functioning of natural environments and threat native plant communities. Invasive species are often favored by human interference such as the creation of artificial forest edges. Field removal experiments may clarify if invasive plants are detrimental to native plant regeneration and how this is related to other local factors. We assessed the joint effect of environment and competition with the invasiveTradescantia zebrinaon tree species recruitment in an Atlantic Forest fragment.  相似文献   
996.
997.
To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP+ than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding.  相似文献   
998.
Prolonged ethanol administration to rats increased the rates of glycerolipid synthesis from added [U-14C]palmitate in fasted hepatocytes; this increase was more than 2-fold in triglyceride synthesis. Prolonged ethanol administration to rats completely eliminated the acute ethanol-induced increase in triglyceride synthesis from palmitate in hepatocytes from fasted rats. This adaptive change occurred in a short initial period of about 10 days of ethanol feeding. In hepatocytes from fasted control rats, addition of ethanol produced a rapid and strong increase in the concentration of glycerol 3-phosphate. By contrast, this acute effect of ethanol disappeared in hepatocytes from fasted alcoholic rats after a prolonged--5 weeks--administration of ethanol in a liquid diet.  相似文献   
999.
1000.
Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen‐activated protein kinases of the high‐osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild‐type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号