首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4641篇
  免费   320篇
  国内免费   2篇
  2023年   26篇
  2022年   53篇
  2021年   109篇
  2020年   70篇
  2019年   97篇
  2018年   134篇
  2017年   104篇
  2016年   158篇
  2015年   239篇
  2014年   224篇
  2013年   303篇
  2012年   316篇
  2011年   301篇
  2010年   203篇
  2009年   190篇
  2008年   228篇
  2007年   214篇
  2006年   215篇
  2005年   189篇
  2004年   178篇
  2003年   148篇
  2002年   162篇
  2001年   89篇
  2000年   83篇
  1999年   77篇
  1998年   34篇
  1997年   32篇
  1996年   42篇
  1995年   42篇
  1994年   28篇
  1993年   30篇
  1992年   47篇
  1991年   44篇
  1990年   36篇
  1989年   44篇
  1988年   34篇
  1987年   40篇
  1986年   43篇
  1985年   36篇
  1984年   22篇
  1981年   23篇
  1979年   18篇
  1978年   21篇
  1977年   17篇
  1976年   18篇
  1975年   17篇
  1974年   27篇
  1973年   23篇
  1969年   17篇
  1968年   19篇
排序方式: 共有4963条查询结果,搜索用时 15 毫秒
961.
962.
Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25–100 μm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides.  相似文献   
963.
GPR40 (FFAR1) and GPR120 (FFAR4) are G-protein-coupled receptors (GPCRs) that are activated by long chain fatty acids (LCFAs). GPR40 is expressed at high levels in islets and mediates the ability of LCFAs to potentiate glucose-stimulated insulin secretion (GSIS). GPR120 is expressed at high levels in colon, adipose, and pituitary, and at more modest levels in pancreatic islets. The role of GPR120 in islets has not been explored extensively. Here, we confirm that saturated (e.g. palmitic acid) and unsaturated (e.g. docosahexaenoic acid (DHA)) LCFAs engage GPR120 and demonstrate that palmitate- and DHA-potentiated glucagon secretion are greatly reduced in isolated GPR120 KO islets. Remarkably, LCFA potentiated glucagon secretion is similarly reduced in GPR40 KO islets. Compensatory changes in mRNA expression of GPR120 in GPR40 KO islets, and vice versa, do not explain that LCFA potentiated glucagon secretion seemingly involves both receptors. LCFA-potentiated GSIS remains intact in GPR120 KO islets. Consistent with previous reports, GPR120 KO mice are hyperglycemic and glucose intolerant; however, our KO mice display evidence of a hyperactive counter-regulatory response rather than insulin resistance during insulin tolerance tests. An arginine stimulation test and a glucagon challenge confirmed both increases in glucagon secretion and liver glucagon sensitivity in GPR120 KO mice relative to WT mice. Our findings demonstrate that GPR120 is a nutrient sensor that is activated endogenously by both saturated and unsaturated long chain fatty acids and that an altered glucagon axis likely contributes to the impaired glucose homeostasis observed in GPR120 KO mice.  相似文献   
964.
The oligopeptidase neurolysin (EC 3.4.24.16; Nln) was first identified in rat brain synaptic membranes and shown to ubiquitously participate in the catabolism of bioactive peptides such as neurotensin and bradykinin. Recently, it was suggested that Nln reduction could improve insulin sensitivity. Here, we have shown that Nln KO mice have increased glucose tolerance, insulin sensitivity, and gluconeogenesis. KO mice have increased liver mRNA for several genes related to gluconeogenesis. Isotopic label semiquantitative peptidomic analysis suggests an increase in specific intracellular peptides in gastrocnemius and epididymal adipose tissue, which likely is involved with the increased glucose tolerance and insulin sensitivity in the KO mice. These results suggest the exciting new possibility that Nln is a key enzyme for energy metabolism and could be a novel therapeutic target to improve glucose uptake and insulin sensitivity.  相似文献   
965.
966.

Aims

Liver glycogen catabolism was evaluated in male Swiss mice fed a high-fat diet rich in saturated fatty acids (HFD) or normal fat diet (NFD) during one week.

Main methods

Liver glycogenolysis (LG) and liver glucose production (LGP) were measured either under basal or stimulated conditions (infusion of glycogenolytic agents). Thus, isolated perfused livers from HFD and NFD mice were infused with glycogenolytic agents, i.e., glucagon, epinephrine, phenylephrine, isoproterenol, adenosine-3′-5′-cyclic monophosphate (cAMP), N6,2′-O-dibutyryl-cAMP (DB-cAMP), 8-bromoadenosine-cAMP (8-Br-cAMP) or N6-monobutyryl-cAMP (N6-MB-cAMP). Moreover, glycemia and liver glycogen content were measured.

Key findings

Glycemia, liver glycogen content and basal rate of LGP and LG were not influenced by the HFD. However, LGP and LG were lower (p < 0.05) in HFD mice during the infusions of glucagon (1 nM), epinephrine (20 μM) or phenylephrine (20 μM). In contrast, the activation of LGP and LG during the infusion of isoproterenol (20 μM) was not different (HFD vs. NFD). Because glucagon showed the most prominent response, the effect of cAMP, its intracellular mediator, on LGP and LG was investigated. cAMP (150 μM) showed lower activation of LGP and LG in the HFD group. However, the activation of LGP and LG was not influenced by HFD whether DB-cAMP (3 μM), 8-Br-cAMP (3 μM) or N6-MB-cAMP (3 μM) were used.

Significance

The activation of LGP and LG depends on the intracellular availability of cAMP. It can be concluded that cAMP played a pivotal role on the activation of LG in high-fat diet fed mice.  相似文献   
967.

Background

Reducing health care costs requires the ability to identify patients most likely to incur high costs. Our objective was to evaluate the ability of the Charlson comorbidity score to predict the individuals who would incur high costs in the subsequent year and to contrast its predictive ability with other commonly used predictors.

Methods

We contrasted the prior year Charlson comorbidity index, costs, Diagnostic Cost Group (DCG) and hospitalization as predictors of subsequent year costs from claims data of fund that provides comprehensive health benefits to a large union of health care workers. Total costs in the subsequent year was the principal outcome.

Results

Of the 181,764 predominantly Black and Latino beneficiaries, 70% were adults (mean age 45.7 years; 62% women). As the comorbidity index increased, total yearly costs increased significantly (P<.001). At lower comorbidity, the costs were similar across different chronic diseases. Using regression to predict total costs, top 5th and 10th percentile of costs, the comorbidity index, prior costs and DCG achieved almost identical explained variance in both adults and children.

Conclusions and Relevance

The comorbidity index predicted health costs in the subsequent year, performing as well as prior cost and DCG in identifying those in the top 5% or 10%. The comorbidity index can be used prospectively to identify patients who are likely to incur high costs.

Trial Registration

ClinicalTrials.gov NCT01761253  相似文献   
968.

Background

Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor.

Objectives

We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways.

Methods and Results

Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP.

Conclusions

CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.  相似文献   
969.
970.
Ramírez-Sanz  L.  Casado  M.A.  de Miguel  J.M.  Castro  I.  Costa  M.  Pineda  F.D. 《Plant Ecology》2000,149(1):63-70
In the rural Mediterranean landscape, mosaics of patches of sclerophyllous scrubland and semi-natural grasslands are frequent. The plant communities of these patches, which are physiognomically easy to recognise, are very heterogeneous. The objective of this paper is to determine whether the patches of scrub-grassland represent an integrated response unit of the vegetation with regard to the physical environment (climatic, geographical and edaphic factors) and human use, or whether, on the contrary, this is an independent response. In order to do this a total of 50 sampling sites where scrubland and grassland patches were in contact were studied along a 370 km E-W mesoclimatic gradient from central Spain to Portugal (Iberian Peninsula). Two distinct zones, the east and the west halves of the study area, were identified according to the plant communities. Within each of these zones, each type of patch responded to the previously mentioned factors, differentially and independently. This determined a general lack of inter-community association or floristic correlation between scrub and grassland plant communities in contact. The spatial association is a random process probably related to the particular human management realised on every scrubland and grassland patch. The scrub–grassland pattern, which is characteristic of the Mediterranean landscape, does not represent an integrated response unit of the vegetation to a given environment, but rather the sum of the independent responses to the environment of the two patches in contact.Nomenclature for taxa: T. G. Tutin et al. 1694–1980. Flora Europaea Cambridge University Press, Cambridge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号