首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   32篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   4篇
  2016年   17篇
  2015年   19篇
  2014年   30篇
  2013年   29篇
  2012年   35篇
  2011年   55篇
  2010年   24篇
  2009年   12篇
  2008年   35篇
  2007年   25篇
  2006年   15篇
  2005年   31篇
  2004年   25篇
  2003年   15篇
  2002年   30篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   6篇
  1997年   9篇
  1996年   10篇
  1995年   4篇
  1994年   11篇
  1993年   6篇
  1992年   14篇
  1991年   7篇
  1990年   11篇
  1989年   8篇
  1988年   7篇
  1987年   10篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1974年   2篇
排序方式: 共有571条查询结果,搜索用时 31 毫秒
21.
Middle‐aged offspring of nonagenarians, as compared to their spouses (controls), show a favorable lipid metabolism marked by larger LDL particle size in men and lower total triglyceride levels in women. To investigate which specific lipids associate with familial longevity, we explore the plasma lipidome by measuring 128 lipid species using liquid chromatography coupled to mass spectrometry in 1526 offspring of nonagenarians (59 years ± 6.6) and 675 (59 years ± 7.4) controls from the Leiden Longevity Study. In men, no significant differences were observed between offspring and controls. In women, however, 19 lipid species associated with familial longevity. Female offspring showed higher levels of ether phosphocholine (PC) and sphingomyelin (SM) species (3.5–8.7%) and lower levels of phosphoethanolamine PE (38:6) and long‐chain triglycerides (TG) (9.4–12.4%). The association with familial longevity of two ether PC and four SM species was independent of total triglyceride levels. In addition, the longevity‐associated lipid profile was characterized by a higher ratio of monounsaturated (MUFA) over polyunsaturated (PUFA) lipid species, suggesting that female offspring have a plasma lipidome less prone to oxidative stress. Ether PC and SM species were identified as novel longevity markers in females, independent of total triglycerides levels. Several longevity‐associated lipids correlated with a lower risk of hypertension and diabetes in the Leiden Longevity Study cohort. This sex‐specific lipid signature marks familial longevity and may suggest a plasma lipidome with a better antioxidant capacity, lower lipid peroxidation and inflammatory precursors, and an efficient beta‐oxidation function.  相似文献   
22.
23.

Introduction

Ultrasonography (US) might have an added value to clinical examination in diagnosing early rheumatoid arthritis (RA) and assessing remission of RA. We aimed to clarify the added value of US in RA in these situations performing a systematic review.

Methods

A systematic literature search was performed for RA, US, diagnosis and remission. Methodological quality was assessed; the wide variability in the design of studies prohibited pooling of results.

Results

Six papers on the added value of US diagnosing early RA were found, in which at least bilateral metacarpophalangeal (MCP), wrists and metatarsophalangeal (MTP) joints were scanned. Compared to clinical examination, US was superior with regard to detecting synovitis and predicting progression to persistent arthritis or RA. Eleven papers on assessing remission were identified, in which at least the wrist and the MCP joints of the dominant hand were scanned. Often US detected inflammation in patients clinically in remission, irrespective of the remission criteria used. Power Doppler signs of synovitis predicted X-ray progression and future flare in patients clinically in remission.

Conclusions

US appears to have added value to clinical examination for diagnosing of RA when scanning at least MCP, wrist and MTP joints, and, when evaluating remission of RA, scanning at least wrist and MCP joints of the dominant hand. For both purposes primarily power Doppler US might be used since its results are less equivocal than those of greyscale US.  相似文献   
24.
Background aimsMesenchymal stromal cells (MSCs) are pluripotent cells that have immunosuppressive and reparative properties in vitro and in vivo. Although autologous bone marrow (BM)-derived MSCs are already clinically tested in transplant recipients, it is unclear whether these BM cells are affected by renal disease. We assessed whether renal failure affected the function and therapeutic potential of BM-MSCs.MethodsMSCs from 10 adults with end-stage renal disease (ESRD) and 10 age-matched healthy controls were expanded from BM aspirates and tested for phenotype and functionality in vitro.ResultsMSCs from ESRD patients were >90% positive for CD73, CD90 and CD105 and negative for CD34 and CD45 and showed a similar morphology and differentiation capacity as MSCs from healthy controls. Of importance for their clinical utility, growth characteristics were similar in both groups, and sufficient numbers of MSCs were obtained within 4 weeks. Messenger RNA expression levels of self-renewal genes and factors involved in repair and inflammation were also comparable between both groups. Likewise, microRNA expression profiling showed a broad overlap between ESRD and healthy donor MSCs. ESRD MSCs displayed the same immunosuppressive capacities as healthy control MSCs, demonstrated by a similar dose-dependent inhibition of peripheral blood mononuclear cell proliferation, similar inhibition of proinflammatory cytokines tumor necrosis factor-α and interferon-γ production and a concomitant increase in the production of interleukin-10.ConclusionsExpanded BM-MSCs procured from ESRD patients and healthy controls are both phenotypically and functionally similar. These findings are important for the potential autologous clinical application of BM-MSCs in transplant recipients.  相似文献   
25.
26.
Metabolic profiling and structural elucidation of novel secondary metabolites obtained from derived deletion strains of the filamentous fungus Penicillium chrysogenum were used to reassign various previously ascribed synthetase genes of the roquefortine/meleagrin pathway to their corresponding products. Next to the structural characterization of roquefortine F and neoxaline, which are for the first time reported for P. chrysogenum, we identified the novel metabolite roquefortine L, including its degradation products, harboring remarkable chemical structures. Their biosynthesis is discussed, questioning the exclusive role of glandicoline A as key intermediate in the pathway. The results reveal that further enzymes of this pathway are rather unspecific and catalyze more than one reaction, leading to excessive branching in the pathway with meleagrin and neoxaline as end products of two branches.  相似文献   
27.
Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by an increased energy production. Increased feces secretion by caspase-1-deficient mice suggests that lipid malabsorption possibly further reduces adipose tissue mass. In this study we investigated whether caspase-1 plays a role in triglyceride-(TG)-rich lipoprotein metabolism using caspase-1-deficient and wild-type mice. Caspase-1 deficiency reduced the postprandial TG response to an oral lipid load, whereas TG-derived fatty acid (FA) uptake by peripheral tissues was not affected, demonstrated by unaltered kinetics of [3H]TG-labeled very low-density lipoprotein (VLDL)-like emulsion particles. An oral gavage of [3H]TG-containing olive oil revealed that caspase-1 deficiency reduced TG absorption and subsequent uptake of TG-derived FA in liver, muscle, and adipose tissue. Similarly, despite an elevated hepatic TG content, caspase-1 deficiency reduced hepatic VLDL-TG production. Intestinal and hepatic gene expression analysis revealed that caspase-1 deficiency did not affect FA oxidation or FA uptake but rather reduced intracellular FA transport, thereby limiting lipid availability for the assembly and secretion of TG-rich lipoproteins. The current study reveals a novel function for caspase-1, or caspase-1-cleaved substrates, in controlling intestinal TG absorption and hepatic TG secretion.  相似文献   
28.
Profiling and structural elucidation of secondary metabolites produced by the filamentous fungus Penicillium chrysogenum and derived deletion strains were used to identify the various metabolites and enzymatic steps belonging to the roquefortine/meleagrin pathway. Major abundant metabolites of this pathway were identified as histidyltryptophanyldiketopiperazine (HTD), dehydrohistidyltryptophanyldi-ketopiperazine (DHTD), roquefortine D, roquefortine C, glandicoline A, glandicoline B and meleagrin. Specific genes could be assigned to each enzymatic reaction step. The nonribosomal peptide synthetase RoqA accepts L-histidine and L-tryptophan as substrates leading to the production of the diketopiperazine HTD. DHTD, previously suggested to be a degradation product of roquefortine C, was found to be derived from HTD involving the cytochrome P450 oxidoreductase RoqR. The dimethylallyltryptophan synthetase RoqD prenylates both HTD and DHTD yielding directly the products roquefortine D and roquefortine C without the synthesis of a previously suggested intermediate and the involvement of RoqM. This leads to a branch in the otherwise linear pathway. Roquefortine C is subsequently converted into glandicoline B with glandicoline A as intermediates, involving two monooxygenases (RoqM and RoqO) which were mixed up in an earlier attempt to elucidate the biosynthetic pathway. Eventually, meleagrin is produced from glandicoline B involving a methyltransferase (RoqN). It is concluded that roquefortine C and meleagrin are derived from a branched biosynthetic pathway.  相似文献   
29.
30.
Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor   总被引:1,自引:0,他引:1  
A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号