首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   27篇
  532篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   4篇
  2016年   17篇
  2015年   19篇
  2014年   26篇
  2013年   23篇
  2012年   32篇
  2011年   48篇
  2010年   24篇
  2009年   12篇
  2008年   35篇
  2007年   25篇
  2006年   15篇
  2005年   31篇
  2004年   25篇
  2003年   13篇
  2002年   29篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   6篇
  1997年   8篇
  1996年   10篇
  1995年   4篇
  1994年   11篇
  1993年   5篇
  1992年   13篇
  1991年   6篇
  1990年   10篇
  1989年   7篇
  1988年   5篇
  1987年   9篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
41.
In this study, we describe the identification of nine novel genes isolated from a unique human first-trimester cDNA library generated from the placental bed. One of these clones, called C2360 and located on chromosome 10q22, was selected as it showed restricted expression in placental bed tissue as well as in JEG3 choriocarcinoma cells with absent expression in adult tissues. We show that the expression is restricted to first-trimester proliferative trophoblasts of the proximal column and show that C2360 is a nuclear protein. No detectable transactivation potential was observed for different domains of the protein. Secondary structure prediction showed that C2360 is a representative member of a eukaryotic family of proteins with a low conservation at the amino acid level, but with strong conservation at the structural level, sharing the general domain (coiled coil 1)-(helix 1)-(coiled coil 2)-(helix 2), or CHCH domain. Each alpha-helix within this domain contains two cysteine amino acids, and these intrahelical cysteines are separated by nine amino acids (C-X(9)-C motif). The fixed position within each helix indicated that both helices could form a hairpin structure stabilized by two interhelical disulfide bonds. Other proteins belonging to the family include estrogen-induced gene 2 and the ethanol-induced 6 protein. The conserved motif was found in yeast, plant, Drosophila, Caenorhabditis elegans, mouse, and human proteins, indicating that the ancestor of this protein family is of eukaryotic origin. These results indicate that C2360 is a representative member of a multifamily of proteins, sharing a protein domain that is conserved in eukaryotes.  相似文献   
42.
43.
For use in clinical studies, a fast and sensitive assay method was developed for the determination of nifedipine in human plasma samples. The assay method is based on tandem mass spectrometry detection (HPLC–MS–MS). The effect of flow injection as well as HPLC separation on the results of the nifedipine determination were evaluated. The limit of quantification is 0.5 ng/ml and the accuracy (as determined by spiking recovery) was found to be good.  相似文献   
44.
With the recent dawn of synthetic biology, the old idea of man-made artificial life has gained renewed interest. In the context of a bottom-up approach, this entails the de novo construction of synthetic cells that can autonomously sustain themselves and proliferate. Reproduction of a synthetic cell involves the synthesis of its inner content, replication of its information module, and growth and division of its shell. Theoretical and experimental analysis of natural cells shows that, whereas the core synthesis machinery of the information module is highly conserved, a wide range of solutions have been realized in order to accomplish division. It is therefore to be expected that there are multiple ways to engineer division of synthetic cells. Here we survey the field and review potential routes that can be explored to accomplish the division of bottom-up designed synthetic cells. We cover a range of complexities from simple abiotic mechanisms involving splitting of lipid-membrane-encapsulated vesicles due to physical or chemical principles, to potential division mechanisms of synthetic cells that are based on prokaryotic division machineries.  相似文献   
45.
A transposon was introduced close to a poorly selectable gene. This gene could be cloned by using selection for the antibiotic resistance marker of the transposon.  相似文献   
46.
The role of cis-abscisic acid (ABA) and gibberellins (GAs) in the induction of cell-cycle activities has been studied during imbibition and subsequent germination of tomato seeds. Using flow cytometry, nuclear replication activity was investigated in embryo root tips isolated from seeds of the ABA-deficient mutant sit w , the GA-deficient mutant gib-1, and the wild-type (MM) tomato (Lycopersicon esculentum Mill. cv. Moneymaker) upon imbibition in water, 10 μM GA4+7, 5 μM ABA or 5 μM ABA+10 μM GA4+7. The nuclei of fully matured dry MM, sit w and gib-1 seeds predominantly showed 2C DNA signals, indicating that the cell-cycle activity of most root-tip cells had been arrested at the G1 phase of nuclear division. However, ABA-deficient sit w seeds contained a significantly higher amount of G2 cells (4C DNA) compared with the other genotypes, suggesting that, during maturation, cell-cycle activity in sit w seeds is less efficiently arrested in G1. Upon imbibition in water, an induction of the 4C signal, indicating nuclear replication, was observed in the root tip cells of both MM and sit w embroys. The augmentation in the 4C signal occurred before visible germination. Gib-1 seeds did not show cell-cycle activity and did not germinate in water. Upon imbibition in GA4+7, both cell-cycle activity and subsequent germination were enhanced in MM and sit w seeds, and were induced in gib-1. In ABA, the germination of MM and sit w seeds was inhibited while nuclear replication of these seeds was not affected. It is concluded that GA influences germination by acting upon processes that precede cell-cycle activation, while ABA affects growth by acting upon processes that follow cell-cycle activation.  相似文献   
47.
A combined experimental-numerical approach was adopted to characterize glucose and oxygen uptake and lactate production by bovine articular chondrocytes in a model system. For a wide range of cell concentrations, cells in agarose were supplemented with either low or high glucose medium. During an initial culture phase of 48 h, oxygen was monitored noninvasively using a biosensor system. Glucose and lactate were determined by medium sampling. In order to quantify glucose and oxygen uptake, a finite element approach was adopted to describe diffusion and uptake in the experimental model. Numerical predictions of lactate, based on simple relations for cell metabolism, were found to agree well for low glucose, but not for high glucose medium. Oxygen did not play a role in either case. Given the close association between chondrocyte energy metabolism and matrix synthesis, a quantifiable prediction of utilization can present a valuable contribution in the optimization of tissue engineering conditions.  相似文献   
48.
Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for the first time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe120 is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe120 in binding dextromethorphan and MDMA.  相似文献   
49.
Filamin A, or actin-binding protein 280, is a ubiquitously expressed cytosolic protein that interacts with intracellular domains of multiple receptors to control their subcellular distribution, and signaling capacity. In this study, we document interaction between FcgammaRI, a high-affinity IgG receptor, and filamin A by yeast two-hybrid techniques and coimmunoprecipitation. Both proteins colocalized at the plasma membrane in monocytes, but dissociated upon FcgammaRI triggering. The filamin-deficient cell line M2 and a filamin-reconstituted M2 subclone (A7), were used to further study FcgammaRI-filamin interactions. FcgammaRI transfection in A7 cells with filamin resulted in high plasma membrane expression levels. In filamin-deficient M2 cells and in filamin RNA-interference studies, FcgammaRI surface expression was consistently reduced. FcgammaRI localized to LAMP-1-positive vesicles in the absence of filamin as shown by confocal microscopy indicative for lysosomal localization. Mouse IgG2a capture experiments suggested a transient membrane expression of FcgammaRI before being transported to the lysosomes. These data support a pivotal role for filamin in FcgammaRI surface expression via retention of FcgammaRI from a default lysosomal pathway.  相似文献   
50.
To build anisotropic, mechanically functioning tissue, it is essential to understand how cells orient in response to mechanical stimuli. Therefore, a computational model was developed which predicts cell orientation, based on the actin stress fiber distribution inside the cell. In the model, the stress fiber distribution evolves dynamically according to the following: (1) Stress fibers contain polymerized actin. The total amount of depolymerized plus polymerized actin is constant. (2) Stress fibers apply tension to their environment. This active tension is maximal when strain rate and absolute strain are zero and reduces with increasing shortening rate and absolute strain. (3) A high active fiber stress in a direction leads to a large amount of fibers in this direction. (4) The cell is attached to a substrate; all fiber stresses are homogenized into a total cell stress, which is in equilibrium with substrate stress. This model predicts that on a substrate of anisotropic stiffness, fibers align in the stiffest direction. Under cyclic strain when the cellular environment is so stiff that no compaction occurs (1 MPa), the model predicts strain avoidance, which is more pronounced with increasing strain frequency or amplitude. Under cyclic strain when the cellular environment is so soft that cells can compact it (10 kPa), the model predicts a preference for the cyclically strained compared to the compacting direction. These model predictions all agree with experimental evidence. For the first time, a computational model predicts cell orientation in response to this range of mechanical stimuli using a single set of parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号