全文获取类型
收费全文 | 574篇 |
免费 | 27篇 |
国内免费 | 1篇 |
专业分类
602篇 |
出版年
2024年 | 2篇 |
2022年 | 12篇 |
2021年 | 16篇 |
2020年 | 4篇 |
2019年 | 12篇 |
2018年 | 12篇 |
2017年 | 8篇 |
2016年 | 21篇 |
2015年 | 27篇 |
2014年 | 36篇 |
2013年 | 47篇 |
2012年 | 42篇 |
2011年 | 42篇 |
2010年 | 27篇 |
2009年 | 26篇 |
2008年 | 44篇 |
2007年 | 28篇 |
2006年 | 33篇 |
2005年 | 15篇 |
2004年 | 29篇 |
2003年 | 20篇 |
2002年 | 17篇 |
2001年 | 4篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1993年 | 2篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1988年 | 3篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 6篇 |
1982年 | 4篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1977年 | 2篇 |
1976年 | 5篇 |
1970年 | 2篇 |
1959年 | 1篇 |
1958年 | 1篇 |
1956年 | 1篇 |
1955年 | 1篇 |
1953年 | 2篇 |
1952年 | 1篇 |
1950年 | 1篇 |
1945年 | 1篇 |
1935年 | 1篇 |
排序方式: 共有602条查询结果,搜索用时 15 毫秒
61.
62.
Proteasome ATPases unravel folded proteins. Introducing a sequence containing only glycine and alanine residues (GAr) into substrates can impair their digestion. We previously proposed that a GAr interferes with the unfolding capacity of the proteasome, leading to partial degradation of products. Here we tested that idea in several ways. Stabilizing or destabilizing a folded domain within substrate proteins changed GAr-mediated intermediate production in the way predicted by the model. A downstream folded domain determined the sites of terminal proteolysis. The spacing between a GAr and a folded domain was critical for intermediate production. Intermediates containing a GAr did not remain associated with proteasomes, excluding models whereby retained GAr-containing proteins halt further processing. The following model is supported: a GAr positioned within the ATPase ring reduces the efficiency of coupling between nucleotide hydrolysis and work performed on the substrate. If this impairment takes place when unfolding must be initiated, insertion pauses and proteolysis is limited to the portion of the substrate that has already entered the catalytic chamber of the proteasome. 相似文献
63.
MarCia T. Ekworomadu Catherine B. Poor Cedric P. Owens Miriam A. Balderas Marian Fabian John S. Olson Frank Murphy Erol Balkabasi Erin S. Honsa Chuan He Celia W. Goulding Anthony W. Maresso 《PLoS pathogens》2012,8(3)
To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 310-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 310-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands. 相似文献
64.
Walker EA Ahmed A Lavery GG Tomlinson JW Kim SY Cooper MS Ride JP Hughes BA Shackleton CH McKiernan P Elias E Chou JY Stewart PM 《The Journal of biological chemistry》2007,282(37):27030-27036
Microsomal glucose-6-phosphatase-alpha (G6Pase-alpha) and glucose 6-phosphate transporter (G6PT) work together to increase blood glucose concentrations by performing the terminal step in both glycogenolysis and gluconeogenesis. Deficiency of the G6PT in liver gives rise to glycogen storage disease type 1b (GSD1b), whereas deficiency of G6Pase-alpha leads to GSD1a. G6Pase-alpha shares its substrate (glucose 6-phosphate; G6P) with hexose-6-phosphate-dehydrogenase (H6PDH), a microsomal enzyme that regenerates NADPH within the endoplasmic reticulum lumen, thereby conferring reductase activity upon 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). 11beta-HSD1 interconverts hormonally active C11beta-hydroxy steroids (cortisol in humans and corticosterone in rodents) to inactive C11-oxo steroids (cortisone and 11-dehydrocorticosterone, respectively). In vivo reductase activity predominates, generating active glucocorticoid. We hypothesized that substrate (G6P) availability to H6PDH in patients with GSD1b and GSD1a will decrease or increase 11beta-HSD1 reductase activity, respectively. We investigated 11beta-HSD1 activity in GSD1b and GSD1a mice and in two patients with GSD1b and five patients diagnosed with GSD1a. We confirmed our hypothesis by assessing 11beta-HSD1 in vivo and in vitro, revealing a significant decrease in reductase activity in GSD1b animals and patients, whereas GSD1a patients showed a marked increase in activity. The cellular trafficking of G6P therefore directly regulates 11beta-HSD1 reductase activity and provides a novel link between glucose metabolism and function of the hypothalamo-pituitary-adrenal axis. 相似文献
65.
Martic G Karetsou Z Kefala K Politou AS Clapier CR Straub T Papamarcaki T 《The Journal of biological chemistry》2005,280(16):16143-16150
Linker histone H1 is the major factor that stabilizes higher order chromatin structure and modulates the action of chromatin-remodeling enzymes. We have previously shown that parathymosin, an acidic, nuclear protein binds to histone H1 in vitro and in vivo. Confocal laser scanning microscopy reveals a nuclear punctuate staining of the endogenous protein in interphase cells, which is excluded from dense heterochromatic regions. Using an in vitro chromatin reconstitution system under physiological conditions, we show here that parathymosin (ParaT) inhibits the binding of H1 to chromatin in a dose-dependent manner. Consistent with these findings, H1-containing chromatin assembled in the presence of ParaT has reduced nucleosome spacing. These observations suggest that interaction of the two proteins might result in a conformational change of H1. Fluorescence spectroscopy and circular dichroism-based measurements on mixtures of H1 and ParaT confirm this hypothesis. Human sperm nuclei challenged with ParaT become highly decondensed, whereas overexpression of green fluorescent protein- or FLAG-tagged protein in HeLa cells induces global chromatin decondensation and increases the accessibility of chromatin to micrococcal nuclease digestion. Our data suggest a role of parathymosin in the remodeling of higher order chromatin structure through modulation of H1 interaction with nucleosomes and point to its involvement in chromatin-dependent functions. 相似文献
66.
Monika Soudi Martina Paumann-Page Cedric Delporte Katharina F. Pirker Marzia Bellei Eva Edenhofer Gerhard Stadlmayr Gianantonio Battistuzzi Karim Zouaoui Boudjeltia Paul G. Furtmüller Pierre Van Antwerpen Christian Obinger 《The Journal of biological chemistry》2015,290(17):10876-10890
Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase that uses bromide as a cofactor for the formation of sulfilimine cross-links. The latter confers critical structural reinforcement to collagen IV scaffolds. Here, hsPxd01 and various truncated variants lacking nonenzymatic domains were recombinantly expressed in HEK cell lines. The N-glycosylation site occupancy and disulfide pattern, the oligomeric structure, and unfolding pathway are reported. The homotrimeric iron protein contains a covalently bound ferric high spin heme per subunit with a standard reduction potential of the Fe(III)/Fe(II) couple of −233 ± 5 mV at pH 7.0. Despite sequence homology at the active site and biophysical properties similar to human peroxidases, the catalytic efficiency of bromide oxidation (kcat/KMapp) of full-length hsPxd01 is rather low but increased upon truncation. This is discussed with respect to its structure and proposed biosynthetic function in collagen IV cross-linking. 相似文献
67.
While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm. 相似文献
68.
69.