首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   37篇
  国内免费   1篇
  2024年   2篇
  2022年   7篇
  2021年   17篇
  2020年   4篇
  2019年   12篇
  2018年   13篇
  2017年   8篇
  2016年   22篇
  2015年   26篇
  2014年   35篇
  2013年   47篇
  2012年   44篇
  2011年   41篇
  2010年   26篇
  2009年   26篇
  2008年   44篇
  2007年   27篇
  2006年   35篇
  2005年   17篇
  2004年   30篇
  2003年   18篇
  2002年   18篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
  1953年   2篇
  1945年   1篇
  1935年   1篇
排序方式: 共有618条查询结果,搜索用时 15 毫秒
531.
The influence of the solvent on the main-chain conformation (phi and Psi dihedral angles) of alpha-helices has been studied by complementary approaches. A first approach consisted in surveying crystal structures of both soluble and membrane proteins. The residues of analysis were further classified as exposed to either the water (polar solvent) or the lipid (apolar solvent) environment or buried to the core of the protein (intermediate polarity). The statistical results show that the more polar the environment, the lower the value of phi(i) and the higher the value of Psi(i) are. The intrahelical hydrogen bond distance increases in water-exposed residues due to the additional hydrogen bond between the peptide carbonyl oxygen and the aqueous environment. A second approach involved nanosecond molecular dynamics simulations of poly-Ala alpha-helices in environments of different polarity: water to mimic hydrophilic environments that can form hydrogen bonds with the peptide carbonyl oxygen and methane to mimic hydrophobic environments without this hydrogen bond capabilities. These simulations reproduce similar effects in phi and Psi angles and intrahelical hydrogen bond distance and angle as observed in the protein survey analysis. The magnitude of the intrahelical hydrogen bond in the methane environment is stronger than in the water environment, suggesting that alpha-helices in membrane-embedded proteins are less flexible than in soluble proteins. There is a remarkable coincidence between the phi and Psi angles obtained in the analysis of residues exposed to the lipid in membrane proteins and the results from computer simulations in methane, which suggests that this simulation protocol properly mimic the lipidic cell membrane and reproduce several structural characteristics of membrane-embedded proteins. Finally, we have compared the phi and Psi torsional angles of Pro kinks in membrane protein crystal structures and in computer simulations.  相似文献   
532.
533.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d=6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 degrees C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 degrees C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   
534.
The lipid composition and structure of detergent-resistant membrane rafts from human, goat, and sheep erythrocytes is investigated. While the sphingomyelin:cholesterol ratio varied from about 1:5 in human to 1:1 in sheep erythrocytes a ratio of 1:1 was found in all raft preparations insoluble in Triton X-100 at 4 degrees C. Excess cholesterol is excluded from rafts and saturated molecular species of sphingomyelin assayed by gas chromatography-mass spectrometry determines the solubility of cholesterol in the detergent. Freeze-fracture electron microscopy shows that vesicles and multilamellar structures formed by membrane rafts have undergone considerable rearrangement from the original membrane. No membrane-associated particles are observed. Synchrotron X-ray diffraction studies showed that d spacings of vesicle preparations of rafts cannot be distinguished from ghost membranes from which they are derived. Dispersions of total polar lipid extracts of sheep rafts show phase separation of inverted hexagonal structure upon heating and this phase coexists with multilamellar structures at 37 degrees C.  相似文献   
535.
We report the first case of inherited ring chromosome 8 syndrome without loss of subtelomeric sequences. The proband is a 6 1/2-year-old boy with short stature, microcephaly, mild mental retardation, and behavioral problems including hyperactivity and attention deficit. His mother presented the same physical features but intelligence was normal. Family history also revealed an uncle and a grandmother, with short stature and microcephaly. Moderate mental retardation was reported in the uncle. Karyotypes and fluorescence in situ hybridization (FISH) analyses were performed on peripheral blood lymphocytes for both child and mother. The child's karyotype was reported as 46,XY,r(8)(p23q24.3)[24]/45,XY,-8[2] and the mother's karyotype 46,XX,r(8)(p23q24.3)[22]/45,XX,-8[2]/47,XX,r(8)(p23q24.3), +r(8)(p23q24.3)[1]. FISH studies showed no deletion of subtelomeric sequences for both child and mother indicating that no or little chromosomal euchromatic material has been deleted. These findings indicate that ring chromosome 8 without loss of subtelomeric sequences can be inherited and that carriers in a same family present with cognitive function ranging from mild mental retardation to normal intelligence.  相似文献   
536.
Dicko C  Kenney JM  Knight D  Vollrath F 《Biochemistry》2004,43(44):14080-14087
Unlike man-made fibers, the silks of spiders are spun from aqueous solutions and at atmospheric pressure in a process still poorly understood. The molecular mechanism of this process involves the conversion of a highly concentrated, predominantly disordered silk protein (spidroin) into beta-sheet-rich structures. To help store and transport the spidroins in solution, as well as probably control their conversion, a liquid crystalline arrangement is established in the storage region in the ampulla and persists into the duct. Although it has been suggested that changes in the concentration of hydrogen and metal ions play a role in the formation of the solid thread, there is no reported evidence that these ions influence the secondary structure of native spidroin in solution. Here, we demonstrate that pH values between approximately 3.5 and 4.5 induce a slow change of conformation from the disordered to the beta-sheet-rich form. We also report that Al(3+), K(+), and Na(+) ions induce similar changes in structure, while Ca(2+) and Mg(2+) stabilize the predominantly disorder state of the protein. Cs(+) and Li(+) have no apparent effect. Direct volumetric and spectrophotometric titration showed a pI of 4.22 +/- 0.33 and apparent pK values of 6.74 +/- 0.71 and 9.21 +/- 0.27, suggesting a mechanism for the effect of low pH on the protein and a rationale for the observed reduction in pH in the duct. We discuss the importance of these findings for the spinning process and the active role played by the spider to alter the kinetics of the transition.  相似文献   
537.
We have analyzed the Fe2+ -catalyzed oxidative cleavages of Ca2+ -ATPase in the presence of Ca2+, with or without the ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) or in the presence of the inhibitor thapsigargin. To identify the positions of cleavages as precisely as possible, we have used previously identified proteinase K and tryptic fragments as a standard, advanced mass spectrometry techniques, as well as specific antibodies. A number of cleavages are similar to those described for Na+,K+ -ATPase or other P-type pumps and are expected on the basis of the putative Mg2+ binding residues near the phosphorylated Asp351 in E1 or E2P conformations. However, intriguing new features have also been observed. These include a Fe2+ site near M3, which cannot be due to the presence of histidine residues as it was postulated in the case of Na+,K+ -ATPase and H+,K+ -ATPase. This site could represent a Ca2+ binding zone between M1 and M3, preceding Ca2+ occlusion within M4, 5, 6, and 8. In addition, we present evidence that, in the non-crystalline state, the N- and P-domain may approach each other, at least temporarily, in the presence of Ca2+ (E1Ca2 conformation), whereas the presence of Mg.ATP stabilizes the N to P interaction (E1.Mg.ATP conformation).  相似文献   
538.
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple malformation/mental retardation syndrome with an estimated incidence among individuals of European ancestry of 1 in 20000 to 1 in 30000. It is caused by inactivity of the enzyme 7-dehydrosterol-delta(7)-reductase, which catalyses the terminal transformation in cholesterol synthesis. Patients show not only an increased level of 7-dehydrocholesterol in blood and tissues, but also increased 8-dehydrocholesterol because of the presence of an active delta(8)-delta(7) isomerase. A major consequence of these biochemical abnormalities is the alteration of normal embryonic and fetal somatic development causing postnatal abnormalities of growth, learning, language and behavior. While deficient cholesterol during early development is the primary cause of central nervous system (CNS) abnormalities and retardation, we questioned whether neurosteroids could also be involved since they can have a profound influence on behavioral characteristics. Disordered neurosteroidogenesis would be expected in SLOS and could be caused by a deficiency in classical neurosteroid synthesis secondary to cholesterol deficiency, or by synthesis from 7- and 8-dehydrocholesterol of novel neurosteroids with delta(7) or delta(8) unsaturation which may have altered activity compared with conventional neurosteroids. In particular we sought analogues of dehydroepiandrosterone sulfate, pregnenolone sulfate and the pregnanolone epimers. We targeted urine from post-pubertal females, as this type of sample would be most likely to yield identifiable amounts of the pregnanolone metabolites of progesterone. Analysis by GC/MS of urinary steroids excreted by post-pubertal females confirmed the presence of neurosteroid-like compounds in SLOS patient's urine. Even though the new neuroactive steroids identified were unlikely to have been formed in the brain, it is likely that mechanisms for their synthesis are operable in this organ.  相似文献   
539.
Nanoscale liquid chromatography coupled to electrospray ionization mass spectrometry was used to identify the nature of the ligand that binds noncovalently to siderocalin (lipocalin 2). The folded state siderocalin-ligand complex was separated from free, unfolded siderocalin using reversed phase chromatography, and the molecular weight of the siderocalin ligand was then determined from the deconvoluted molecular weights of the complex and of the free protein. The ligand was identified as dihydroxybenzoyl-serine, a breakdown product of enterobactin, an iron-chelating compound ("siderophore") synthesized in bacteria. These results demonstrate that, in some cases, electrostatic noncovalent protein complexes can survive the denaturing conditions of reversed phase liquid chromatography and the gas phase transfer occurring during electrospray ionization.  相似文献   
540.
Spider silk is made and spun in a complex process that tightly controls the conversion from soluble protein to insoluble fiber. The mechanical properties of the silk fiber are modulated to suit the needs of the spider by various factors in the animal's spinning process. In the major ampullate (MA) gland, the silk proteins are secreted and stored in the lumen of the ampulla. A particular structural fold and functional activity is determined by the spidroins' amino acid sequences as well as the gland's environment. The transition from this liquid stage to the solid fiber is thought to involve the conversion of a predominantly unordered structure to a structure rich in beta-sheet as well as the extraction of water. Circular dichroism provides a quick and versatile method for examining the secondary structure of silk solutions and studying the effects of various conditions. Here we present the relatively novel technique of synchrotron radiation based circular dichroism as a tool for investigating biomolecular structures. Specifically we analyze, in a series of example studies on structural transitions induced in liquid silk, the type of information accessible from this technique and any artifacts that might arise in studying self-assembling systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号