首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   58篇
  国内免费   2篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   14篇
  2015年   22篇
  2014年   41篇
  2013年   44篇
  2012年   58篇
  2011年   44篇
  2010年   24篇
  2009年   26篇
  2008年   34篇
  2007年   41篇
  2006年   30篇
  2005年   37篇
  2004年   38篇
  2003年   29篇
  2002年   24篇
  2001年   7篇
  2000年   6篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1987年   2篇
  1984年   2篇
  1983年   3篇
  1979年   3篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1957年   1篇
  1952年   1篇
排序方式: 共有653条查询结果,搜索用时 31 毫秒
651.
The paired source and sink concepts are used increasingly in ecology and Earth sciences, but they have evolved in divergent directions, hampering communication across disciplines. We propose a conceptual framework that unifies existing definitions, and review their most significant consequences for the various disciplines. A general definition of the source and sink concepts that transcends disciplines is based on net flows between the components of a system: a source is a subsystem that is a net exporter of some living or non‐living entities of interest, and a sink is a net importer of these entities. Sources and sinks can further be classified as conditional and unconditional, depending on the intrinsic propensity of subsystems to either produce (source) or absorb (sink) a surplus of these entities under some (conditional) or all (unconditional) conditions. The distinction between conditional and unconditional sources and sinks, however, is strongly context dependent. Sources can turn into sinks, and vice versa, when the context is changed, when systems are subject to temporal fluctuations or evolution, or when they are considered at different spatial and temporal scales. The conservation of ecosystem services requires careful consideration of the source?sink dynamics of multiple ecosystem components. Our synthesis shows that source?sink dynamics has profound consequences for our ability to understand, predict, and manage species and ecosystems in heterogeneous landscapes.  相似文献   
652.
653.
The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号