首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   58篇
  国内免费   2篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   14篇
  2015年   22篇
  2014年   41篇
  2013年   44篇
  2012年   58篇
  2011年   44篇
  2010年   24篇
  2009年   26篇
  2008年   34篇
  2007年   41篇
  2006年   30篇
  2005年   37篇
  2004年   38篇
  2003年   29篇
  2002年   24篇
  2001年   7篇
  2000年   6篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1987年   2篇
  1984年   2篇
  1983年   3篇
  1979年   3篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1957年   1篇
  1952年   1篇
排序方式: 共有653条查询结果,搜索用时 46 毫秒
31.
32.
In order to gain a first insight into the effects of reactive oxygen species (ROS) on plant mitochondria, we studied the effect of the ROS producing system consisting of xanthine plus xanthine oxidase on the rate of membrane potential (DeltaPsi) generation due to either succinate or NADH addition to durum wheat mitochondria as monitored by safranin fluorescence. We show that the early ROS production inhibits the succinate-dependent, but not the NADH-dependent, DeltaPsi generation and oxygen uptake. This inhibition appears to depend on the impairment of mitochondrial permeability to succinate. It does not involve mitochondrial thiol groups sensitive to either mersalyl or N-ethylmaleimide and might involve both protein residues and/or membrane lipids, as suggested by the mixed nature. We propose that, during oxidative stress, early generation of ROS can affect plant mitochondria by impairing metabolite transport, thus preventing further substrate oxidation, DeltaPsi generation and consequent large-scale ROS production.  相似文献   
33.
Homologous recombination is one of the major pathways for repair of DNA double-strand breaks (DSBs). Important proteins in this pathway are Rad51 and Rad54. Rad51 forms a nucleoprotein filament on single-stranded DNA (ssDNA) that mediates pairing with and strand invasion of homologous duplex DNA with the assist of Rad54. We estimated that the nucleus of a mouse embryonic stem (ES) cells contains on average 4.7x10(5) Rad51 and 2.4x10(5) Rad54 molecules. Furthermore, we showed that the amount of Rad54 was subject to cell cycle regulation. We discuss our results with respect to two models that describe how Rad54 stimulates Rad51-mediated DNA strand invasion. The models differ in whether Rad54 functions locally or globally. In the first model, Rad54 acts in cis relative to the site of strand invasion. Rad54 coats the Rad51 nucleoprotein filament in stoichiometric amounts and binds to the target duplex DNA at the site that is homologous to the ssDNA in the Rad51 nucleoprotein filament. Subsequently, it promotes duplex DNA unwinding. In the second model, Rad54 acts in trans relative to the site of strand invasion. Rad54 binds duplex DNA distant from the site that will be unwound. Translocation of Rad54 along the duplex DNA increases superhelical stress thereby promoting duplex DNA unwinding.  相似文献   
34.
The glucosyltransferase amylosucrase is structurally quite similar to the hydrolase alpha-amylase. How this switch in functionality is achieved is an important and fundamental question. The inactive E328Q amylosucrase variant has been co-crystallized with maltoheptaose, and the structure was determined by x-ray crystallography to 2.2 A resolution, revealing a maltoheptaose binding site in the B'-domain somewhat distant from the active site. Additional soaking of these crystals with maltoheptaose resulted in replacement of Tris in the active site with maltoheptaose, allowing the mapping of the -1 to +5 binding subsites. Crystals of amylosucrase were soaked with sucrose at different concentrations. The structures at approximately 2.1 A resolution revealed three new binding sites of different affinity. The highest affinity binding site is close to the active site but is not in the previously identified substrate access channel. Allosteric regulation seems necessary to facilitate access from this binding site. The structures show the pivotal role of the B'-domain in the transferase reaction. Based on these observations, an extension of the hydrolase reaction mechanism valid for this enzyme can be proposed. In this mechanism, the glycogen-like polymer is bound in the widest access channel to the active site. The polymer binding introduces structural changes that allow sucrose to migrate from its binding site into the active site and displace the polymer.  相似文献   
35.
36.
A conserved catalytic residue in the ubiquitin-conjugating enzyme family   总被引:8,自引:0,他引:8  
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor.  相似文献   
37.
The importance and effect of Fc glycosylation of monoclonal antibodies with regard to biological activity is widely discussed and has been investigated in numerous studies. Fc glycosylation of monoclonal antibodies from current production systems is subject to batch-to-batch variability. If there are glycosylation changes between different batches, these changes are observed not only for one but multiple glycan species. Therefore, studying the effect of distinct Fc glycan species such as galactosylated and sialylated structures is challenging due to the lack of well-defined differences in glycan patterns of samples used. In this study, the influence of IgG1 Fc galactosylation and sialylation on its effector functions has been investigated using five different samples which were produced from one single drug substance batch by in vitro glycoengineering. This sample set comprises preparations with minimal and maximal galactosylation and different levels of sialylation of fully galactosylated Fc glycans. Among others, Roche developed the glycosyltransferase enzyme sialyltransferase which was used for the in vitro glycoengineering activities at medium scale. A variety of analytical assays, including Surface Plasmon Resonance and recently developed FcγR affinity chromatography, as well as an optimized cell-based ADCC assay were applied to investigate the effect of Fc galactosylation and sialylation on the in vitro FcγRI, IIa, and IIIa receptor binding and ADCC activity of IgG1. The results of our studies do not show an impact, neither positive nor negative, of sialic acid- containing Fc glycans of IgG1 on ADCC activity, FcγRI, and RIIIa receptors, but a slightly improved binding to FcγRIIa. Furthermore, we demonstrate a galactosylation-induced positive impact on the binding activity of the IgG1 to FcγRIIa and FcγRIIIa receptors and ADCC activity.  相似文献   
38.
As a partner of the European Virus Archive (EVA) FP7 project, our laboratory maintains a large collection of freeze-dried viruses. The distribution of these viruses to academic researchers, public health organizations and industry is one major aim of the EVA consortium. It is known that lyophilization requires appropriate stabilizers to prevent inactivation of the virus. However, few studies have investigated the influence of different stabilizers and lyophilization protocols on the thermostability of different viruses. In order to identify optimal lyophilization conditions that will deliver maximum retention of viral infectivity titre, different stabilizer formulations containing trehalose, sorbitol, sucrose or foetal bovine serum were evaluated for their efficacy in stabilizing a representative panel of freeze dried viruses at different storage temperatures (-20°C, +4°C and +20°C) for one week, the two latter mimicking suboptimal shipping conditions. The Tissue Culture Infectious Dose 50% (TCID50) assay was used to compare the titres of infectious virus. The results obtained using four relevant and model viruses (enveloped/non enveloped RNA/DNA viruses) still serve to improve the freeze drying conditions needed for the development and the distribution of a large virus collection.  相似文献   
39.
Genetical genomics has been suggested as a powerful approach to study the genotype–phenotype gap. However, the relatively low power of these experiments (usually related to the high cost) has hindered fulfillment of its promise, especially for loci (QTL) of moderate effects.One strategy with which to overcome the issue is to use a targeted approach. It has two clear advantages: (i) it reduces the problem to a simple comparison between different genotypic groups at the QTL and (ii) it is a good starting point from which to investigate downstream effects of the QTL. In this study, from 698 F2 birds used for QTL mapping, gene expression profiles of 24 birds with divergent homozygous QTL genotypes were investigated. The targeted QTL was on chromosome 1 and affected initial pH of breast muscle. The biological mechanisms controlling this trait can be similar to those affecting malignant hyperthermia or muscle fatigue in humans. The gene expression study identified 10 strong local signals that were markedly more significant compared to any genes on the rest of the genome. The differentially expressed genes all mapped to a region <1 Mb, suggesting a remarkable reduction of the QTL interval. These results, combined with analysis of downstream effect of the QTL using gene network analysis, suggest that the QTL is controlling pH by governing oxidative stress. The results were reproducible with use of as few as four microarrays on pooled samples (with lower significance level). The results demonstrate that this cost-effective approach is promising for characterization of QTL.  相似文献   
40.
Suberoyl bishydroxamic acid (SBHA) as a histone deacetylase (HDAC) inhibitor has various cellular effects such as cell growth and apoptosis. In the present study, we evaluated the effects of SBHA on the growth and death of A549 lung cancer cells. SBHA inhibited the growth of A549 cells with an IC50 of approximately 50 μM at 72 h in a dose-dependent manner. DNA flow cytometric analysis indicated that SBHA induced a G2/M phase arrest of the cell cycle. This agent also induced apoptosis, as evidenced by sub-G1 cells and annexin V-FITC staining cells. SBHA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, Bax increase, and the activation of caspase-3. All of the tested caspase inhibitors significantly rescued some cells from SBHA-induced A549 cell death. However, none of the caspase inhibitors prevented the loss of MMP (ΔΨm) induced by SBHA. Intracellular reactive oxygen species (ROS) levels including O 2 ?? were increased in 50 μM SBHA-treated A549 cells. None of the caspase inhibitors attenuated ROS levels in these cells. SBHA also elevated the number of glutathione (GSH)-depleted cells in A549 cells, which was reduced by treatment with caspase inhibitors. In conclusion, this is the first report that SBHA inhibited the growth of A549 lung cancer cells via caspase-dependent apoptosis, which was related to GSH depletion rather than changes in ROS level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号