首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   1篇
  37篇
  2020年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
排序方式: 共有37条查询结果,搜索用时 0 毫秒
11.
Background: Physiotherapy of edema in cases with obstructed main lymphatics of lower limbs requires knowledge of how high external pressures should be applied manually or set in compression devices in order to generate tissue pressures high enough to move tissue fluid to nonswollen regions and to measure its flow rate. Methods: We measured tissue fluid pressure and flow in subcutaneous tissue of lymphedematous limbs stages II to IV at rest and during pneumatic compression under various pressures and inflation timing. An 8-chamber sequential compression device inflated to pressures 50-120?mmHg, for 50 sec each chamber, with no distal deflation, was used. Pressures were measured using a wick-in-needle and electronic manometer. Fluid flow was calculated from continuously recorded changes in limb circumference using strain gauge plethysmography. Results: Before massage, in all stages of lymphedema, stagnant tissue fluid pressures in subcutaneous tissue ranged between -1 and +10 mmHg and did not differ from those measured in normal subjects. Pressures generated in tissue fluid by pneumatic compression reached 40-100 mmHg and were lower than those in inflated chambers. High pressure gradient through the skin was caused by its rigidity (fibrosis) and dissipation of applied compression force to proximal noncompressed limb regions. The calculated volumes of displaced tissue fluid ranged from 10 to 30 ml per compression cycle, to reach in some cases 100 ml in the groin region. Conclusions: Tissue fluid pressures generated by a pneumatic device were found lower than in the compression chambers. The obtained results point to the necessity of applying high pressures and longer compression times to generate effective tissue fluid pressures and to provide enough time for moving the stagnant fluid.  相似文献   
12.
The inhibition of the 26S proteasome evokes endoplasmic reticulum stress, which has been shown to be implicated in the antitumoral effects of proteasome inhibitors. The cellular and molecular effects of the proteasome inhibitor—bortezomib—on human colon cancer cells are as yet poorly characterized. Bortezomib selectively induces apoptosis in some cancer cells. However, the nature of its selectivity remains unknown. Previously, we demonstrated that, in contrast to normal fibroblasts, bortezomib treatment evoked strong effect on apoptosis of breast cancer cells incubated in hypoxic and normoxic conditions. The study presented here provides novel information on the cellular effects of bortezomib in DLD-1 colon cancer cells line. We observe twofold higher percentage of apoptotic cells incubated for 48 h with 25 and 50 nmol/l of bortezomib in hypoxic conditions and four-, fivefold increase in normoxic conditions in comparison to control cells, incubated without bortezomib. It is of interest that bortezomib evokes strong effect on necrosis of DLD-1 colon cancer cell line. We observe the sixfold increase in necrosis of DLD-1 cells incubated with 25 or 50 nmol/l of bortezomib for 48 h in hypoxia and fourfold increase in normoxic conditions in comparison to adequate controls. We suggest that bortezomib may be candidates for further evaluation as chemotherapeutic agents for human colon cancer.  相似文献   
13.

Background  

Ionic aluminum (mainly Al3+) is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula) releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth.  相似文献   
14.
The aim of this investigation was to reveal the regulatory properties of bacteriophage preparations in a model of mitogen-induced splenocyte proliferation in mice. We showed that sepharose 4B-purified preparations of the Staphylococcus aureus phage A20/R exhibited costimulatory activity in splenocyte proliferation induced by suboptimal (0.25 microg/ml) concentrations of ConA. On the other hand, the purified phage fraction was regulatory with regard to splenocyte proliferation induced by the optimal (2.5 microg/ml) ConA concentration. We also showed that the phage preparation can elicit IL-6 production in splenocyte cultures and enhance ConA-induced production of that cytokine. Furthermore, the phages preferentially induced IL-6 production in adherent splenocytes and increased levels of that cytokine in cultures of peritoneal cells from mice and rats. This phenomenon may explain the costimulatory activity of phages in the model described.  相似文献   
15.
16.
We decided to study the effect of glucose deprivation on collagen metabolism in MCF7 cells. The incorporation of [3H]‐proline into collagenase‐sensitive and hydroxyproline‐containing proteins was used as an index of collagen synthesis, whereas pulse—chase technique was employed to evaluate the degradation of newly synthesized proteins. The MCF7 cells incubated in high glucose medium synthesized detectable amounts of collagenous proteins. Most of them were found in the cell layer. The shortage of glucose resulted in about 30% reduction in collagen synthesis. The pulse—chase experiments demonstrated that proportionally less collagen was degraded in cultures incubated in low‐glucose than in high‐glucose media.  相似文献   
17.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen and glycosaminoglycan (GAG) biosynthesis in tissues. IGF-I activity is modulated by a family of IGF-binding proteins (IGFBPs) with different IGF-I binding affinities. At least IGFBP-1 and IGFBP-2 are known as inhibitors of IGF functions. Some IGFBPs (IGFBP-1, IGFBP-3 and IGFBP-5) may undergo phosphorylation that dramatically increase their affinity for IGF. During fasting of animals there is a significant decrease of the collagen and GAG content of the skin, accompanied by a reduction of plasma IGF-I levels. However, in previous studies we showed that in the skin of fasted rats IGF-I as well as IGFBP-1 and IGFBP-2 expressions were not different, compared to control rat skin, although collagen content was significantly decreased. In the present study we show that fasted rat skin contains similar amounts of IGF-I, IGFBP-3 and IGFBP-1, although extract from fasted rat skin induced inhibition of collagen biosynthesis in cultured fibroblasts, compared to control rat skin extract. Western immunoblot analysis of control and fasted rat skin extracts, using anti-phosphoserine antibodies for immunoprecipitated IGFBP-1 and IGFBP-3, revealed that both proteins are present in phosphorylated form. Although no differences were found in the expression of phosphorylated IGFBP-3 between control and fasted rat skins, that of phosphorylated IGFBP-1 in fasted rat skin extract was higher than in control one. We suggest that there is an increased level of IGFBP-1 phosphoisoform in fasted rat skin, associated with increased affinity for IGF-I. The increase of phosphorylated IGFBP-1 in fasted rat skin tissue may augment IGF-I binding affinity for IGF and decrease its bioavailability for receptor interaction. This mechanism may prevent IGF-I dependent stimulation of fibroblasts to produce extracellular matrix components. The specific expression of IGFBPs and their phosphoisoforms in tissues may play an important role in regulation of IGF-I action during physiologic and pathologic responses.  相似文献   
18.
Fasting is accompanied by a decrease in collagen biosynthesis. The mechanism of this phenomenon involves inhibition of prolidase activity, an enzyme that plays a key role in upregulation of collagen metabolism. The mechanism of fasting-induced inhibition of prolidase activity is not known. Phosphoenolpyruvate (PEP) is known as a strong inhibitor of prolidase activity. It exerts this effect by inhibition of the enzyme phosphorylation. Unphosphorylated prolidase is inactive. One may expect that fasting-associated increase in posphoenolpyruvate content in animal tissues may be a factor which inactivates prolidase and makes it inactive in collagen biosynthesis. We measured the levels of phosphoenolpyruvate, pyruvate, and pyruvate kinase in the skin of control and fasted rats and correlated these parameters with prolidase expression, prolidase activity and collagen biosynthesis in this tissue. Significant increase of PEP concentration (about 30%) was found in the skin of fasted rats. In the same time prolidase activity and collagen biosynthesis decreased by about 50% and 30%, respectively, compared to controls. It is known that phosphoenolpyruvate is converted to pyruvate by the action of pyruvate kinase. Since fasting significantly decreases the activity of this enzyme, one may suggest that the accumulation of PEP is caused by a reduced utilisation of this metabolite. As demonstrated by Western immunoblot analysis the decrease in prolidase activity was not accompanied by a decrease in the amount of the enzyme protein. Instead, a decrease in the enzyme phosphorylation was observed. The reduction in phosphorylation seems to be responsible for the decrease in prolidase activity. These data suggest that fasting-evoked accumulation of PEP reduces the activity of prolidase, providing a mechanism for inhibition of collagen biosynthesis in the skin.  相似文献   
19.
Thyroid hormone stimulates erythropoietic differentiation. However, severe anemia is sometimes seen in patients with hyperthyroidism, and the mechanisms have not been fully elucidated. Bone marrow is comprised about 2–8 % oxygen, and the characteristics of hematopoietic stem cells have been shown to be influenced under hypoxia. Hypoxia-inducible factor-1 is a critical mediator of cellular responses to hypoxia and an important mediator in signal transduction of thyroid hormone [triiodothyronine (T3)]. The aim of this study was to investigate the effect of T3 on erythropoiesis under hypoxia mimicking physiological conditions in the bone marrow. We maintained human erythroleukemia K562 cells under hypoxic atmosphere (2 % O2) and examined their cellular characteristics. Compared to that under normal atmospheric conditions, cells under hypoxia showed a reduction in the proliferation rate and increase in the hemoglobin content or benzidine-positive rate, indicating promotion of erythroid differentiation. T3 had no effect on hypoxia-induced erythroid differentiation, but significantly inhibited activin A/erythroid differentiation factor-induced erythroid differentiation. Moreover, GATA2 mRNA expression was suppressed in association with erythroid differentiation, while T3 significantly diminished that suppression. These results suggest that T3 has a direct suppressive effect on erythroid differentiation under hypoxic conditions.  相似文献   
20.

Background

The prone position and electron-based technique for craniospinal irradiation (CSI) have been standard in our department for many years. But this immobilization is difficult for the anaesthesiologist to gain airway access. The increasing number of children treated under anaesthesia led us to reconsider our technique.

Aim

The purpose of this study is to report our new photon-based technique for CSI which could be applied in both the supine and the prone position and to compare this technique with our electron-based technique.

Materials and methods

Between November 2007 and May 2008, 11 children with brain tumours were treated in the prone position with CSI. For 9 patients two treatment plans were created: the first one using photons and the second one using electron beams for spinal irradiation. We prepared seven 3D-conformal photon plans and four forward planned segmented field plans. We compared 20 treatment plans in terms of target dose homogeneity and sparing of organs at risk.

Results

In segmented field plans better dose homogeneity in the thecal sac volume was achieved than in electron-based plans. Regarding doses in organs at risk, in photon-based plans we obtained a lower dose in the thyroid but a higher one in the heart and liver.

Conclusions

Our technique can be applied in both the supine and prone position and it seems to be more feasible and precise than the electron technique. However, more homogeneous target coverage and higher precision of dose delivery for photons are obtained at the cost of slightly higher doses to the heart and liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号