首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   34篇
  国内免费   1篇
  2022年   3篇
  2021年   8篇
  2019年   4篇
  2018年   4篇
  2017年   9篇
  2016年   11篇
  2015年   8篇
  2014年   21篇
  2013年   14篇
  2012年   22篇
  2011年   27篇
  2010年   17篇
  2009年   16篇
  2008年   15篇
  2007年   13篇
  2006年   19篇
  2005年   15篇
  2004年   11篇
  2003年   13篇
  2002年   10篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   13篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1959年   1篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
21.
Protein film voltammetry is used to probe the energetics of electron transfer and substrate binding at the active site of a respiratory flavoenzyme--the membrane-extrinsic catalytic domain of Escherichia coli fumarate reductase (FrdAB). The activity as a function of the electrochemical driving force is revealed in catalytic voltammograms, the shapes of which are interpreted using a Michaelis-Menten model that incorporates the potential dimension. Voltammetric experiments carried out at room temperature under turnover conditions reveal the reduction potentials of the FAD, the stability of the semiquinone, relevant protonation states, and pH-dependent succinate--enzyme binding constants for all three redox states of the FAD. Fast-scan experiments in the presence of substrate confirm the value of the two-electron reduction potential of the FAD and show that product release is not rate limiting. The sequence of binding and protonation events over the whole catalytic cycle is deduced. Importantly, comparisons are made with the electrocatalytic properties of SDH, the membrane-extrinsic catalytic domain of mitochondrial complex II.  相似文献   
22.
3-hydroxykynurenine as a substrate/activator for mushroom tyrosinase   总被引:1,自引:0,他引:1  
3-Hydroxykynurenine is a tryptophan metabolite with an o-aminophenol structure. It is both a tyrosinase activator and a substrate, reducing the lag phase, stimulating the monophenolase activity, and being oxidized to xanthommatin. In the early stage of monophenol hydroxylation, catechol accumulation takes place, whereas 3-hydroxykynurenine is substantially unchanged and no significant amounts of the o-quinone are produced. These results suggest an activating action of 3-hydroxykynurenine toward o-hydroxylation of monophenols. 3-Hydroxykynurenine could therefore well act as a physiological device to control phenolics metabolism to catechols and quinonoids.  相似文献   
23.
The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal (Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover.  相似文献   
24.
Beta-D-galactofuranosidase is a good chemotherapeutic target for the design of inhibitors, since beta-D-galactofuranose is a constituent of important parasite glycoconjugates but is not present in the host mammals. With this aim, we have synthesized for the first time alkyl, benzyl and aryl 1-thio-beta-D-galactofuranosides by condensation of penta-O-benzoyl-alpha,beta-D-galactofuranose with the corresponding thiols, in the presence of SnCl4as catalyst. The complete chemical and spectroscopical characterization of these compounds showed that the reaction was stereoselective. Debenzoylation with sodium methoxide afforded the beta-S-galactofuranosides in high yield. The thioglycosides were tested as inhibitors of the beta-D- galactofuranosidase of Penicillium fellutanum, using for the first time 4-nitrophenyl-beta-D-galactofuranoside as chromogenic substrate. The 4- aminophenyl-1-thio-beta-D-galactofuranoside, obtained by catalytic hydrogenation of the nitrophenyl derivative, was the best inhibitor being then an adequate ligand for the preparation of an affinity phase aimed at the isolation of beta-d-galactofuranosidases from different sources. Also the inhibitory activity of d-galactono-1, 4-lactone was shown.   相似文献   
25.

Background  

The Beijing lineage of Mycobacterium tuberculosis is causing concern due to its global distribution and its involvement in severe outbreaks. Studies focused on this lineage are mainly restricted to geographical settings where its prevalence is high, whereas those in other areas are scarce. In this study, we analyze Beijing isolates in the Mediterranean area, where this lineage is not prevalent and is mainly associated with immigrant cases.  相似文献   
26.

Background

Critical illness, mediated by trauma or sepsis, can lead to physiological changes that alter the pharmacokinetics of antibiotics and may result in sub-therapeutic concentrations at the sites of infection. The first aim of this project is to identify the clinical characteristics of critically ill patients with significant trauma that have been recently admitted to ICU that may predict the dosing requirements for the antibiotic, cefazolin. The second aim of this is to identify the clinical characteristics of critically ill patients with sepsis that may predict the dosing requirements for the combination antibiotic, piperacillin-tazobactam.

Methods/Design

This is an observational pharmacokinetic study of patients with trauma (cefazolin) or with sepsis (piperacillin-tazobactam). Participants will have samples from blood and urine, collected at different intervals. Patients will also have a microdialysis catheter inserted into subcutaneous tissue to measure interstitial fluid penetration of the antibiotic. Participants will be administered sinistrin, indocyanine green and sodium bromide as well as have cardiac output monitoring performed and tetrapolar bioimpedance to determine physiological changes resulting from pathology. Analysis of samples will be performed using validated liquid chromatography tandem mass-spectrometry. Pharmacokinetic analysis will be performed using non-linear mixed effects modeling to determine individual and population pharmacokinetic parameters of antibiotics.

Discussion

The study will describe cefazolin and piperacillin-tazobactam concentrations in plasma and the interstitial fluid of tissues in trauma and sepsis patients respectively. The results of this study will guide clinicians to effectively dose these antibiotics in order to maximize the concentration of antibiotics in the interstitial fluid of tissues.  相似文献   
27.

Introduction  

The aim of this study was to investigate whether serum biomarker levels of C2C, C1,2C, CS846, and CPII can predict the long-term course of disease activity and radiographic progression early in the disease course of rheumatoid arthritis (RA).  相似文献   
28.
Proline dehydrogenase (ProDH) catalyzes the flavin-dependent oxidation of Pro into Δ1-pyrroline-5-carboxylate (P5C). This is the first of the two enzymatic reactions that convert proline (Pro) into glutamic acid (Glu). The P5C thus produced is non-enzymatically transformed into glutamate semialdehyde (GSA), which acts as a substrate of P5C dehydrogenase (P5CDH) to generate Glu. Activation of ProDH can generate different effects depending on the behavior of other enzymes of this metabolism. Under different conditions it can generate toxic levels of P5C, alter the cellular redox homeostasis and even produce reactive oxygen species (ROS). Recent studies indicate that in Arabidopsis, the enzyme potentiates the oxidative burst and cell death associated to the Hypersensitive Responses (HR). Interestingly, activation of ProDH can also produce harmful effects in other organisms, suggesting that the enzyme may play a conserved role in the control of cell death.Key words: proline, proline dehydrogenase, cell death, hypersensitive response (HR), reactive oxygen species (ROS)  相似文献   
29.
Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases.  相似文献   
30.
The venoms of Micrurus lemniscatus carvalhoi, Micrurus frontalis frontalis, Micrurus surinamensis surinamensis and Micrurus nigrocinctus nigrocinctus were assayed for biological activities. Although showing similar liposome disrupting and myotoxic activities, M. frontalis frontalis and M. nigrocinctus nigrocinctus displayed higher anticoagulant and phospholipase A2 (PLA2) activities. The latter induced a higher edema response within 30 min. Both venoms were the most toxic as well. In the isolated chick biventer cervicis preparation, M. lemniscatus carvalhoi venom blocked the indirectly elicited twitch-tension response (85+/-0.6% inhibition after a 15 min incubation at 5 microg of venom/mL) and the response to acetylcholine (ACh; 55 or 110 microM), without affecting the response to KCl (13.4 mM). In mouse phrenic nerve-diaphragm preparation, the venom (5 microg/mL) produced a complete inhibition of the indirectly elicited contractile response after 50 min incubation and did not affect the contractions elicited by direct stimulation. M. lemniscatus carvalhoi inhibited 3H-L-glutamate uptake in brain synaptosomes in a Ca2+-, but not time, dependent manner. The replacement of Ca2+ by Sr2+ and ethylene glycol-bis(beta-aminoethyl ether) (EGTA), or alkylation of the venom with p-bromophenacyl bromide (BPB), inhibited 3H-L-glutamate uptake. M. lemniscatus carvalhoi venom cross-reacted with postsynaptic alpha-neurotoxins short-chain (antineurotoxin-II) and long-chain (antibungarotoxin) antibodies. It also cross-reacted with antimyotoxic PLA2 antibodies from M. nigrocinctus nigrocinctus (antinigroxin). Our results point to the need of catalytic activity for these venoms to exert their neurotoxic activity efficiently and to their components as attractive tools for the study of molecular targets on cell membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号