首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   15篇
  2023年   3篇
  2022年   6篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   11篇
  2017年   9篇
  2016年   15篇
  2015年   24篇
  2014年   24篇
  2013年   29篇
  2012年   43篇
  2011年   21篇
  2010年   10篇
  2009年   13篇
  2008年   17篇
  2007年   17篇
  2006年   22篇
  2005年   12篇
  2004年   20篇
  2003年   16篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有333条查询结果,搜索用时 31 毫秒
71.
Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.  相似文献   
72.

Introduction

Species of the genera Psychotria and Palicourea are sources of indole alkaloids, however, the distribution of alkaloids within the plants is not known. Analysing the spatial distribution using desorption electrospray ionisation mass spectrometry imaging (DESI‐MSI) has become attractive due to its simplicity and high selectivity compared to traditional histochemical techniques.

Objectives

To apply DESI‐MSI to visualise the alkaloid distribution on the leaf surface of Psychotria prunifolia and Palicourea coriacea and to compare the distributions with HPLC–MS and histochemical analyses.

Methodology

Based upon previous structure elucidation studies, four alkaloids targeted in this study were identified using high resolution mass spectrometry by direct infusion of plant extracts, and their distributions were imaged by DESI‐MSI via tissue imprints on a porous Teflon surface. Relative quantitation of the four alkaloids was obtained by HPLC–MS/MS analysis performed using multiple‐reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer.

Results

Alkaloids showed distinct distributions on the leaf surfaces. Prunifoleine was mainly present in the midrib, while 10‐hydroxyisodeppeaninol was concentrated close to the petiole; a uniform distribution of 10‐hydroxyantirhine was observed in the whole leaf of Psychotria prunifolia. The imprinted image from the Palicourea coriacea leaf also showed a homogeneous distribution of calycanthine throughout the leaf surface.

Conclusion

Different distributions were found for three alkaloids in Psychotria prunifolia, and the distributions found by MSI were in complete accordance with HPLC–MS analysis and histochemical results. The DESI‐MSI technique was therefore demonstrated to provide reliable information about the spatial distribution of metabolites in plants. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
73.
74.
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell‐based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex‐vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi‐analytical methods, some of them time‐consuming. The present work evaluates the use of mid‐infrared (MIR) spectroscopy, through rapid and economic high‐throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno‐free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:447–455, 2016  相似文献   
75.

Background

Few studies have addressed the influence of dietary patterns (DP) during adolescence on the amount of body fat in early adulthood.

Objective

To analyze the associations between DP tracking and changes in the period between 15 and 18 years of age and the percentage of body fat (%BF) at age 18 years.

Methods

We used data from 3,823 members of the 1993 Pelotas (Brazil) birth cohort. Body density was measured at age 18 years by air displacement plethysmograph (BOD POD) and the %BF was calculated applying the Siri equation. Based on the estimates from the FFQ, we identified DP at ages 15 (“Varied”, “Traditional”, “Dieting” and “Processed meats”) and 18 years (“Varied”, “Traditional”, “Dieting” and “Fish, fast food and alcohol”). The DP tracking was defined as the individual’s adherence to the same DP at both ages. Associations were tested using multiple linear regression models stratified by sex.

Results

The mean %BF was 25.0% (95% CI: 24.7 to 25.4), significantly greater for girls than boys (p<0.001). The adherence to any DP at age 15 years was not associated with the %BF at age 18 years. However, individuals who adhered to a “Dieting” DP at age 18 years showed greater %BF (1.30 and 1.91 percentage points in boys and girls, respectively) in comparison with those who adhered to a “Varied” DP. Boys who presented tracking of a “Dieting” DP presented greater average %BF in comparison with others DP, as well as girls who changed from the “Traditional” or “Processed meats” DP to a “Dieting” DP.

Conclusion

These results may support public health policies and strategies focused on improving dietary habits of adolescents and young adults and preventing accumulation of body fat, especially among the adolescents with restrictive dietary habits.  相似文献   
76.
The dimorphic fungus Paracoccidioides spp. is responsible for paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America, causing serious public health problems. Adequate treatment of mycotic infections is difficult, since fungi are eukaryotic organisms with a structure and metabolism similar to those of eukaryotic hosts. In this way, specific fungus targets have become important to search of new antifungal compound. The role of the glyoxylate cycle and its enzymes in microbial virulence has been reported in many fungal pathogens, including Paracoccidioides spp. Here, we show the action of argentilactone and its semi-synthetic derivative reduced argentilactone on recombinant and native isocitrate lyase from Paracoccidioides lutzii Pb01 (PbICL) in the presence of different carbon sources, acetate and glucose. Additionally, argentilactone and its semi-synthetic derivative reduced argentilactone exhibited relevant inhibitory activity against P. lutzii Pb01 yeast cells and dose-dependently influenced the transition from the mycelium to yeast phase. The other oxygenated derivatives tested, epoxy argentilactone and diol argentilactone-, did not show inhibitory action on the fungus. The results were supported by in silico experiments.  相似文献   
77.
Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer''s, Parkinson''s, and Huntington''s diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.  相似文献   
78.
Mimicry can directly affect the evolutionary history of models, mimics, and signal receivers. Mimics often use multimodal signaling to deceive receivers. Jamie et al. showed that brood parasitic birds display multimodal signaling of mimetic traits triggered by sexual and filial imprinting on host species. These resulting adaptations can interact with premating isolation barriers to strengthen reproductive isolation and potentially drive sympatric speciation.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号