首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   26篇
  2022年   3篇
  2021年   8篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   12篇
  2013年   13篇
  2012年   11篇
  2011年   17篇
  2010年   12篇
  2009年   19篇
  2008年   13篇
  2007年   15篇
  2006年   12篇
  2005年   5篇
  2004年   9篇
  2003年   5篇
  2002年   11篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1997年   5篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1979年   1篇
  1978年   1篇
  1969年   1篇
  1966年   2篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
41.
42.
Although human adenovirus type 5 (Ad5) has been widely studied, relatively little work has been done with other human adenovirus serotypes. The Ad5 E4orf6 and E1B55K proteins form Cul5-based E3 ubiquitin ligase complexes to degrade p53, Mre11, DNA ligase IV, integrin α3, and almost certainly other targets, presumably to optimize the cellular environment for viral replication and perhaps to facilitate persistence or latency. As this complex is essential for the efficient replication of Ad5, we undertook a systematic analysis of the structure and function of corresponding E4orf6/E1B55K complexes from other serotypes to determine the importance of this E3 ligase throughout adenovirus evolution. E4orf6 and E1B55K coding sequences from serotypes representing all subgroups were cloned, and each pair was expressed and analyzed for their capacity to assemble the Cullin-based ligase complex and to degrade substrates following plasmid DNA transfection. The results indicated that all formed Cullin-based E3 ligase complexes but that heterogeneity in both structure and function existed. Whereas Cul5 was present in the complexes of some serotypes, others recruited primarily Cul2, and the Ad16 complex clearly bound both Cul2 and Cul5. There was also heterogeneity in substrate specificity. Whereas all serotypes tested appeared to degrade DNA ligase IV, complexes from some serotypes failed to degrade Mre11, p53, or integrin α3. Thus, a major evolutionary pressure for formation of the adenovirus ligase complex may lie in the degradation of DNA ligase IV; however, it seems possible that the degradation of as-yet-unidentified critical targets or, perhaps even more likely, appropriate combinations of substrates plays a central role for these adenoviruses.  相似文献   
43.
44.
45.

Background

Although genetic or epigenetic alterations have been shown to affect the three-dimensional organization of genomes, the utility of chromatin conformation in the classification of human disease has never been addressed.

Results

Here, we explore whether chromatin conformation can be used to classify human leukemia. We map the conformation of the HOXA gene cluster in a panel of cell lines with 5C chromosome conformation capture technology, and use the data to train and test a support vector machine classifier named 3D-SP. We show that 3D-SP is able to accurately distinguish leukemias expressing MLL-fusion proteins from those expressing only wild-type MLL, and that it can also classify leukemia subtypes according to MLL fusion partner, based solely on 5C data.

Conclusions

Our study provides the first proof-of-principle demonstration that chromatin conformation contains the information value necessary for classification of leukemia subtypes.  相似文献   
46.
47.
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.  相似文献   
48.
Benzoxazinoids are a class of indole-derived plant chemical defenses comprising compounds with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton and their derivatives. These phytochemicals are widespread in grasses, including important cereal crops such as maize, wheat and rye, as well as a few dicot species, and display a wide range of antifeedant, insecticidal, antimicrobial, and allelopathic activities. Although their overall effects against insect herbivores are frequently reported, much less is known about how their modes of action specifically influence insect physiology. The present review summarizes the biological activities of benzoxazinoids on chewing, piercing-sucking, and root insect herbivores. We show how within-plant distribution modulates the exposure of different herbivore feeding guilds to these defenses, and how benzoxazinoids may act as toxins, feeding deterrents and digestibility-reducing compounds under different conditions. In addition, recent results on the metabolism of benzoxazinoids by insects and their consequences for plant-herbivore interactions are addressed, as well as directions for future research.  相似文献   
49.
Biochemical and cytochemical studies have revealed that abnormal processing of low-density-lipoprotein (LDL) cholesterol can be reversed in mutant Niemann-Pick C (NP-C) fibroblasts when 2% dimethyl sulfoxide (DMSO) is added to the culture medium. Both the excessive lysosomal accumulation of LDL cholesterol and the delayed induction of cellular homeostatic responses associated with the uptake of LDL by the mutant cells were substantially reversed by DMSO. DMSO appears to accelerate the intracellular mobilization of LDL-derived cholesterol through effects that may reflect enhanced membrane permeability or cholesterol solubilization.  相似文献   
50.
Xylobolus frustulatus caused a distinct pocket rot in decorticated oak. Polymerization products appeared to accumulate in advance of delignified wood to form barriers to decay. Medullary ray parenchyma and earlywood vessels were not readily degraded and remained between pockets of decay. Chemical analyses indicated that 97% lignin, 96% xylose, and 69% mannose were removed from pockets of wood during incipient decay. Although 53% of the cellulose was removed from these areas, the remaining white tissues were composed of relatively pure cellulose. Hyphae became abundant as the released cellulose was subsequently removed. In the most advanced stages of decay, hyphae were absent from pockets, and only a sparse lining of crystals, found to contain a high concentration of calcium, remained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号