首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   92篇
  国内免费   2篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   14篇
  2020年   7篇
  2019年   13篇
  2018年   11篇
  2017年   9篇
  2016年   30篇
  2015年   37篇
  2014年   39篇
  2013年   55篇
  2012年   84篇
  2011年   82篇
  2010年   51篇
  2009年   45篇
  2008年   60篇
  2007年   53篇
  2006年   56篇
  2005年   55篇
  2004年   73篇
  2003年   65篇
  2002年   34篇
  2001年   12篇
  2000年   4篇
  1999年   9篇
  1998年   10篇
  1997年   9篇
  1996年   10篇
  1995年   17篇
  1994年   5篇
  1993年   8篇
  1992年   13篇
  1991年   7篇
  1990年   2篇
  1989年   2篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1039条查询结果,搜索用时 15 毫秒
161.
162.
The 2001 UK foot and mouth disease (FMD) crisis is commonly understood to have been a nonhuman animal problem, an economic industrial crisis that was resolved after eradication. By using a different lens, a longitudinal ethnographic study of the health and social consequences of the epidemic, the research reported here indicates that 2001 was a human tragedy as well as an animal one. In a diary-based study, it can be seen that life after the FMD crisis was accompanied by distress, feelings of bereavement, fear of a new disaster, loss of trust in authority and systems of control, and the undermining of the value of local knowledge. Diverse groups experienced distress well beyond the farming community. Such distress remained largely invisible to the range of “official” inquiries into the disaster. That an FMD epidemic of the scale of 2001 could happen again in a developed country is a deeply worrying prospect, but it is to be hoped that contingency plans are evolving along with enhanced understanding of the human, animal, and financial cost.  相似文献   
163.

Background  

Association testing is a powerful tool for identifying disease susceptibility genes underlying complex diseases. Technological advances have yielded a dramatic increase in the density of available genetic markers, necessitating an increase in the number of association tests required for the analysis of disease susceptibility genes. As such, multiple-tests corrections have become a critical issue. However the conventional statistical corrections on locus-specific multiple tests usually result in lower power as the number of markers increases. Alternatively, we propose here the application of the longest significant run (LSR) method to estimate a region-specific p-value to provide an index for the most likely candidate region.  相似文献   
164.

Background  

Microarray-based pooled DNA experiments that combine the merits of DNA pooling and gene chip technology constitute a pivotal advance in biotechnology. This new technique uses pooled DNA, thereby reducing costs associated with the typing of DNA from numerous individuals. Moreover, use of an oligonucleotide gene chip reduces costs related to processing various DNA segments (e.g., primers, reagents). Thus, the technique provides an overall cost-effective solution for large-scale genomic/genetic research. However, few publicly shared tools are available to systematically analyze the rapidly accumulating volume of whole-genome pooled DNA data.  相似文献   
165.
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila.  相似文献   
166.

Background

Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients.

Results

In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA).

Conclusion

Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow, clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia.  相似文献   
167.
We previously generated a conditional floxed mouse line to study androgen action, in which exon 3 of the androgen receptor (AR) gene is flanked by loxP sites, with the neomycin resistance gene present in intron 3. Deletion of exon 3 in global AR knockout mice causes androgen insensitivity syndrome, characterized by genotypic males lacking normal masculinization. We now report that male mice carrying the floxed allele (AR(lox)) have the reverse phenotype, termed hyperandrogenization. AR(lox) mice have increased mass of androgen-dependent tissues, including kidney, (P < 0.001), seminal vesicle (P < 0.001), levator ani muscle (P = 0.001), and heart (P < 0.05). Serum testosterone is not significantly different. Testis mass is normal, histology shows normal spermatogenesis, and AR(lox) males are fertile. AR(lox) males also have normal AR mRNA levels in kidney, brain, levator ani, liver, and testis. This study reaffirms the need to investigate the potential phenotypic effects of floxed alleles in the absence of cre in tissue-specific knockout studies. In addition, this androgen hypersensitivity model may be useful to further investigate the effects of subtle perturbations of androgen action in a range of androgen-responsive systems in the male.  相似文献   
168.
Cannabinoid 1 receptor (CB1R) inverse agonists are emerging as a potential obesity therapy. However, the physiological mechanisms by which these agents modulate human energy balance are incompletely elucidated. Here, we describe a comprehensive clinical research study of taranabant, a structurally novel acyclic CB1R inverse agonist. Positron emission tomography imaging using the selective CB1R tracer [(18)F]MK-9470 confirmed central nervous system receptor occupancy levels ( approximately 10%-40%) associated with energy balance/weight-loss effects in animals. In a 12-week weight-loss study, taranabant induced statistically significant weight loss compared to placebo in obese subjects over the entire range of evaluated doses (0.5, 2, 4, and 6 mg once per day) (p < 0.001). Taranabant treatment was associated with dose-related increased incidence of clinical adverse events, including mild to moderate gastrointestinal and psychiatric effects. Mechanism-of-action studies suggest that engagement of the CB1R by taranabant leads to weight loss by reducing food intake and increasing energy expenditure and fat oxidation.  相似文献   
169.
Most plants encode a limited set of polygalacturonase inhibitor (PGIP) genes that may be involved in aspects of plant development, but more importantly in the inactivation of polygalacturonases (PG) secreted by pathogens. Previously, we characterized two Brassica napus PGIP genes, BnPgip1 and BnPgip2, which were differentially expressed in response to pathogen infection and wounding. Here we report that the B. napus genome encodes a set of at least 16 PGIP genes that are similar to BnPgip1 or BnPgip2. This is the largest Pgip gene family reported to date. Comparison of the BnPGIPs revealed several sites within the xxLxLxx region of leucine rich repeats that form beta-sheets along the interacting face of the PGIP that are hypervariable and represent good candidates for generating PGIP diversity. Characterization of the regulatory regions and RT-PCR studies with gene-specific primers revealed that individual genes were differentially responsive to pathogen infection, mechanical wounding and signaling molecules. Many of the BnPgip genes responded to infection by the necrotic pathogen, Sclerotinia sclerotiorum; however, these genes were also induced either by jasmonic acid, wounding and salicylic acid or some combination thereof. The large number of PGIPs and the differential manner in which they are regulated likely ensures that B. napus can respond to attack from a broad spectrum of pathogens and pests.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号