首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11851篇
  免费   960篇
  国内免费   11篇
  12822篇
  2023年   61篇
  2022年   113篇
  2021年   238篇
  2020年   106篇
  2019年   154篇
  2018年   214篇
  2017年   164篇
  2016年   288篇
  2015年   507篇
  2014年   593篇
  2013年   800篇
  2012年   892篇
  2011年   925篇
  2010年   577篇
  2009年   499篇
  2008年   773篇
  2007年   783篇
  2006年   709篇
  2005年   682篇
  2004年   677篇
  2003年   639篇
  2002年   568篇
  2001年   120篇
  2000年   85篇
  1999年   131篇
  1998年   173篇
  1997年   108篇
  1996年   89篇
  1995年   95篇
  1994年   103篇
  1993年   93篇
  1992年   78篇
  1991年   54篇
  1990年   59篇
  1989年   55篇
  1988年   56篇
  1987年   38篇
  1986年   34篇
  1985年   38篇
  1984年   45篇
  1983年   35篇
  1982年   35篇
  1981年   40篇
  1980年   45篇
  1979年   37篇
  1978年   23篇
  1977年   25篇
  1976年   20篇
  1974年   20篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
A ceramic-based microelectrode array (MEA) with enzyme coatings for the accurate measurement of acetylcholine (ACh) in brain tissues is presented. Novel design features allow for self-referencing recordings for improved limits of detection and highly selective measurements of ACh and choline (Ch), simultaneously. Design and fabrication features also result in minimal tissue damage during implantation and improved enzyme coatings due to isolated recording sites. In these studies we have used a recombinant human acetylcholinesterase enzyme coating, which has better reproducibility than other commercially available enzymes. The precisely patterned recording site dimensions, low limit of detection (0.2 micro M) and fast response time ( approximately 1s) allow for second-by-second measurements of ACh and Ch in brain tissues. An electropolymerized meta-phenylenediamine (mPD) layer was used to exclude interfering substances from being recorded at the platinum recording sites. Our studies support that the mPD layer was stable for over 24h under in vitro and in vivo recording conditions. In addition, our work supports that the current configuration of the MEAs produces a robust design, which is suited for measures of ACh and Ch in rat brain.  相似文献   
82.
83.
84.
85.
Transmissible spongiform encephalopathy strains demonstrate specific prion characteristics, each with specific incubation times, and strain-specific patterns of deposition of the misfolded isoform of prion, PrPSc, in the brains of infected individuals. Different biochemical properties, including glycosylation profiles and the degree of proteinase resistance, have been shown to be strain-specific. However, no relationship between these properties and the phenotypic differences in the subsequent diseases has as yet been determined. Here we explore the utility of gene expression profiles to identify differences in the host response to different strains of prion agent. We identify 114 genes that exhibit significantly different levels of expression in mice infected with three strains of scrapie. These genes represent a pool of genes involved in a strain-specific response to prion disease. We have identified the most discriminatory genes from this list utilizing a wrapper-based feature selection algorithm with external cross-validation.  相似文献   
86.

Background

Amyotrophic lateral sclerosis (ALS)-linked fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is concentrated within cytoplasmic stress granules under conditions of induced stress. Since only the mutants, but not the endogenous wild-type FUS, are associated with stress granules under most of the stress conditions reported to date, the relationship between FUS and stress granules represents a mutant-specific phenotype and thus may be of significance in mutant-induced pathogenesis. While the association of mutant-FUS with stress granules is well established, the effect of the mutant protein on stress granules has not been examined. Here we investigated the effect of mutant-FUS on stress granule formation and dynamics under conditions of oxidative stress.

Results

We found that expression of mutant-FUS delays the assembly of stress granules. However, once stress granules containing mutant-FUS are formed, they are more dynamic, larger and more abundant compared to stress granules lacking FUS. Once stress is removed, stress granules disassemble more rapidly in cells expressing mutant-FUS. These effects directly correlate with the degree of mutant-FUS cytoplasmic localization, which is induced by mutations in the nuclear localization signal of the protein. We also determine that the RGG domains within FUS play a key role in its association to stress granules. While there has been speculation that arginine methylation within these RGG domains modulates the incorporation of FUS into stress granules, our results demonstrate that this post-translational modification is not involved.

Conclusions

Our results indicate that mutant-FUS alters the dynamic properties of stress granules, which is consistent with a gain-of-toxic mechanism for mutant-FUS in stress granule assembly and cellular stress response.
  相似文献   
87.
The Ly49H activating receptor on C57BL/6 (B6) NK cells plays a key role in early resistance to murine cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. The m157 molecule is also recognized by the Ly49I inhibitory receptor from the 129/J mouse strain. The m157 gene is highly sequence variable among MCMV isolates, with many m157 variants unable to bind Ly49H(B6). In this study, we have sought to define if m157 variability leads to a wider spectrum of interactions with other Ly49 molecules and if this modifies host susceptibility to MCMV. We have identified novel m157-Ly49 receptor interactions, involving Ly49C inhibitory receptors from B6, BALB/c, and NZB mice, as well as the Ly49H(NZB) activation receptor. Using an MCMV recombinant virus in which m157(K181) was replaced with m157(G1F), which interacts with both Ly49H(B6) and Ly49C(B6), we show that the m157(G1F)-Ly49C interactions cause no apparent attenuating effect on viral clearance in B6 mice. Hence, when m157 can bind both inhibitory and activation NK cell receptors, the outcome is still activation. Thus, these data indicate that whereas m157 variants predominately interact with inhibitory Ly49 receptors, these interactions do not profoundly interfere with early NK cell responses.  相似文献   
88.
Pont NP  Kendall CA  Magan N 《Mycopathologia》2012,173(2-3):93-101
The aims of this study were to use qualitative volatile fingerprints obtained using a hybrid sensor array system to screen anti-fungals for controlling the important lung infecting fungus, Aspergillus fumigatus, especially in immunocompromised patients. SIFT-MS was also used to try and identify key volatiles produced by A. fumigatus. Initial studies were carried out to identify the ED(50) and ED(90) (effective dose) for inhibiting growth of A. fumigatus using three anti-fungal compounds, benomyl, tebuconazole and fluconazole. Subsequent studies involved inoculation of malt extract agar plates with spores of A. fumigatus (25 and 37°C) over periods of 24-72 h to examine the headspace volatile fingerprints generated from the sample treatments using the hybrid sensor array system to compare controls and ED(50)/ED(90) concentrations. The sensor responses showed discrimination between treatments after 48-h incubation when benomyl and tebuconazole were used against A. fumigatus at 37°C using Principal Components Analysis and Cluster Analysis. SIFT-MS analysis showed that methyl pentadiene, ethanol, isoprene and methanol were key biomarker volatiles produced by A. fumigatus in the presence of anti-fungal compounds. This may also be a good approach for the development of rapid screening of anti-microbial compounds and potentially useful for monitoring the possible build up of resistance to specific drug types. Volatile fingerprints produced by patient samples could also be used to evaluate whether lung infections are caused by bacteria or specific fungi to facilitate early diagnosis and enable the right drug treatment to be prescribed.  相似文献   
89.
Breast cancer cells experience a range of shear stresses in the tumor microenvironment (TME). However most current in vitro three-dimensional (3D) models fail to systematically probe the effects of this biophysical stimuli on cancer cell metastasis, proliferation, and chemoresistance. To investigate the roles of shear stress within the mammary and lung pleural effusion TME, a bioreactor capable of applying shear stress to cells within a 3D extracellular matrix was designed and characterized. Breast cancer cells were encapsulated within an interpenetrating network hydrogel and subjected to shear stress of 5.4 dynes cm−2 for 72 hr. Finite element modeling assessed shear stress profiles within the bioreactor. Cells exposed to shear stress had significantly higher cellular area and significantly lower circularity, indicating a motile phenotype. Stimulated cells were more proliferative than static controls and showed higher rates of chemoresistance to the anti-neoplastic drug paclitaxel. Fluid shear stress-induced significant upregulation of the PLAU gene and elevated urokinase activity was confirmed through zymography and activity assay. Overall, these results indicate that pulsatile shear stress promotes breast cancer cell proliferation, invasive potential, chemoresistance, and PLAU signaling.  相似文献   
90.
Changes in temperature and moisture as a result of climate forcing can impact performance of planted trees. Tree performance may also be sensitive to new soil conditions, for example, brought about by seeds germinating in soils different from those colonized by ancestral populations. Such “edaphic constraint” may occur with natural migration or human‐assisted movement. Pinus ponderosa seedlings, sourced from one location (“home” site), were grown across a field environmental gradient in either their original home soil or in soils from two different “away” sites. Seedlings were inoculated with site‐specific soil organisms by germinating seeds in living soil. After 6 months, the inoculated seedlings were transplanted into sterilized soils from the home or away sites. This experimental design allowed us to uncouple the importance of abiotic and biotic soil properties and test (1) how biotic and abiotic soil properties interact with climate to influence plant growth and stress tolerance, and (2) the role of soil biota in facilitating growth in novel environments. Seedlings grew least in hotter and drier away sites with away soil biota. Home soil biota ameliorated negative impacts on growth of hotter and drier away sites. Measurements of photosynthetic rate, stomatal conductance, and chlorophyll florescence (Fv/Fm) suggest that edaphic constraint reduced growth by increasing tree water stress. Results suggest that success of Ponderosa pine plantings into warming environments will be enhanced by pre‐inoculation with native soil biota of the seed source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号