首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11811篇
  免费   962篇
  国内免费   11篇
  2023年   56篇
  2022年   97篇
  2021年   238篇
  2020年   106篇
  2019年   153篇
  2018年   214篇
  2017年   164篇
  2016年   288篇
  2015年   507篇
  2014年   591篇
  2013年   795篇
  2012年   892篇
  2011年   923篇
  2010年   577篇
  2009年   499篇
  2008年   772篇
  2007年   783篇
  2006年   708篇
  2005年   682篇
  2004年   677篇
  2003年   638篇
  2002年   568篇
  2001年   120篇
  2000年   85篇
  1999年   131篇
  1998年   173篇
  1997年   108篇
  1996年   89篇
  1995年   95篇
  1994年   103篇
  1993年   93篇
  1992年   78篇
  1991年   54篇
  1990年   59篇
  1989年   54篇
  1988年   56篇
  1987年   38篇
  1986年   34篇
  1985年   37篇
  1984年   45篇
  1983年   35篇
  1982年   35篇
  1981年   40篇
  1980年   45篇
  1979年   37篇
  1978年   23篇
  1977年   25篇
  1976年   20篇
  1974年   20篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
211.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.  相似文献   
212.
Iodine staining of clones of nitrogen-starved Chlamydomonas cells was used to screen for mutants with altered levels or altered composition of storage starch. Mutations leading to defects in quantity or morphology of starch granules not only can provide information on storage starch biosynthesis and granule assembly but can also be used as morphological markers in genetic and cell biological studies. A mutant of Chlamydomonas monoica Strehlow devoid of starch granules was obtained following ultraviolet mutagenesis. Nitrogen-starved cells of the sta-1 strain lacked pyrenoidal starch granules and granules normally associated with thylakoid membranes. The mutant phenotype was the consequence of a single Mendelian mutation that appeared to affect granule assembly rather than starch biosynthesis per se and that had no effect on vegetative growth, sexual reproduction, or zygospore viability.  相似文献   
213.
214.
215.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   
216.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   
217.
218.
219.
Changes in temperature and moisture as a result of climate forcing can impact performance of planted trees. Tree performance may also be sensitive to new soil conditions, for example, brought about by seeds germinating in soils different from those colonized by ancestral populations. Such “edaphic constraint” may occur with natural migration or human‐assisted movement. Pinus ponderosa seedlings, sourced from one location (“home” site), were grown across a field environmental gradient in either their original home soil or in soils from two different “away” sites. Seedlings were inoculated with site‐specific soil organisms by germinating seeds in living soil. After 6 months, the inoculated seedlings were transplanted into sterilized soils from the home or away sites. This experimental design allowed us to uncouple the importance of abiotic and biotic soil properties and test (1) how biotic and abiotic soil properties interact with climate to influence plant growth and stress tolerance, and (2) the role of soil biota in facilitating growth in novel environments. Seedlings grew least in hotter and drier away sites with away soil biota. Home soil biota ameliorated negative impacts on growth of hotter and drier away sites. Measurements of photosynthetic rate, stomatal conductance, and chlorophyll florescence (Fv/Fm) suggest that edaphic constraint reduced growth by increasing tree water stress. Results suggest that success of Ponderosa pine plantings into warming environments will be enhanced by pre‐inoculation with native soil biota of the seed source.  相似文献   
220.
Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW; Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号