首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11982篇
  免费   1008篇
  国内免费   11篇
  2023年   56篇
  2022年   95篇
  2021年   242篇
  2020年   107篇
  2019年   154篇
  2018年   216篇
  2017年   165篇
  2016年   293篇
  2015年   510篇
  2014年   597篇
  2013年   806篇
  2012年   897篇
  2011年   932篇
  2010年   577篇
  2009年   502篇
  2008年   778篇
  2007年   788篇
  2006年   711篇
  2005年   687篇
  2004年   683篇
  2003年   642篇
  2002年   570篇
  2001年   129篇
  2000年   99篇
  1999年   140篇
  1998年   176篇
  1997年   110篇
  1996年   96篇
  1995年   96篇
  1994年   106篇
  1993年   95篇
  1992年   81篇
  1991年   62篇
  1990年   62篇
  1989年   60篇
  1988年   63篇
  1987年   47篇
  1986年   35篇
  1985年   40篇
  1984年   50篇
  1983年   36篇
  1982年   39篇
  1981年   42篇
  1980年   50篇
  1979年   42篇
  1978年   25篇
  1977年   26篇
  1976年   20篇
  1974年   23篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
41.
A previous report described several cDNAs corresponding to mRNAs which accumulated in wheat aleurone layers treated with gibberellic acid (GA) (Baulcombe and Buffard, 1983). The protein sequence deduced from one of these clones (2529) has extensive similarity to the thiol protease, cathepsin B from mammalian cells. Southern analysis of wheat DNA has shown that the 2529 mRNA is encoded by a small family of genes carried on the group 4 chromosome. The nucleotide sequence of a member of the gene family expressed at a low level in aleurone layers and the use of a primer extension assay to identify a clone of a member of the gene family producing an abundant mRNA are reported. The 2529 mRNA accumulates in the scutellum and the aleurone layer of germinating grains where its expression is regulated by GA. In the scutellum the expression was restricted to the parenchyma, suggesting that the 2529 product may have a role other than for mobilization of the endosperm.  相似文献   
42.
Summary The ascosporogenous yeast Lipomyces tetrasporus produced an unusual extracellular carbohydrase. It was purified to homogeneity using ammonium sulphate precipitation and DEAE Bio-gel A ion-exchange chromatography. While retaining highest activity on low-molecular-weight saccharides such as maltose and nigerose, it displays considerable activity towards polymeric substrates including soluble starch. It is particularly unusual in that it also hydrolyses dextran and has a very high affinity for this substrate. The enzyme has an exo-lytic mode of action with the only hydrolysis product, glucose, being released in the -anomeric form. Optimum activity occurs at pH 4.5 and at 50°C. It is a glycoprotein, and has an M r value of 150 000 (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) — 183 000 (fast protein liquid chromatography) and a pI of 6.0. Offprint requests to: C. T. Kelly  相似文献   
43.
Transgenic animals provide a model system to elucidate the role of specific proteins in development. This model is now being used increasingly in the cardiovascular system to study cardiac growth and differentiation. During cardiac myocyte development a transition occurs from hyperplastic to hypertrophic growth. In the heart the switch from myocyte proliferation to terminal differentiation is synchronous with a decrease in c-myc mRNA abundance. To determine whether c-myc functions to regulate myocyte proliferation and/or differentiation, we examined the in vivo effect of increasing c-myc expression during fetal development and of preventing the decrease in c-myc mRNA expression that normally occurs during myocyte development. The model system used was a strain of transgenic mice exhibiting constitutive expression of c-myc mRNA in cardiac myocytes throughout development. Increased c-myc mRNA expression is associated with both atrial and ventricular enlargement in the transgenic mice. This increase in cardiac mass is secondary to myocyte hyperplasia, with the transgenic hearts containing greater than twice as many myocytes as nontransgenic hearts. The results of this study indicate that constitutive expression of c-myc mRNA in the heart during development results in enhanced hyperplastic growth, and suggest a regulatory role for the c-myc protooncogene in cardiac myogenesis.  相似文献   
44.
The mechanism of the photodimerization of adjacent adenine bases on the same strand of DNA has been elucidated by determining the structure of one of the two major photoproducts that are formed by UV irradiation of the deoxydinucleoside monophosphate d(ApA). The photoproduct, denoted d(ApA)*, corresponds to a species of adenine photodimer first described by P?rschke (P?rschke, D. (1973) J.Am.Chem.Soc. 95, 8440-8446). From a detailed examination of its chemical and spectroscopic properties, including comparisons with the model compound N-cyano-N1-(1-methylimidazol-5-yl)formamidine, it is deduced that d(ApA)* contains a deoxyadenosine unit covalently linked through its C(8) position to C(4) of an imidazole N(1) deoxyribonucleoside moiety bearing an N-cyanoformamidino substituent at C(5). On treatment with acid, d(ApA)* is degraded with high specificity to 8-(5-amino-imidazol-4-yl)adenine whose identity has been confirmed by independent chemical synthesis. It is concluded that the primary event in adenine photodimerization entails photoaddition of the N(7)-C(8) double bond of the 5'-adenine across the C(6) and C(5) positions of the 3'-adenine. The azetidine species thus generated acts as a common precursor to both types of d(ApA) photoproduct which are formed from it by competing modes of azetidine ring fission.  相似文献   
45.
The bacterial symbionts of many marine invertebrates contain ribulose 1,5-bisphosphate (RuBP) carboxylase but apparently no carboxysomes, polyhedral bodies containing RuBP carboxylase. In the few cases where polyhedral bodies have been observed they have not been characterised enzymatically. Polyhedral bodies, 50–90 nm in diameter, were observed in thin cell sections of Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa and RuBP carboxylase activity was detected in both soluble and particulate fractions after centrifugation of cell-free extracts. RuBP carboxylase purified 90-fold from the soluble fraction was of high molecular weight and consisted of large and small subunits, with molecular weights of 53,110 and 11,100 respectively. Particulate RuBP carboxylase activity was associated with polyhedral bodies 50–100 nm in diameter, as revealed by density gradient centrifugation and electron microscopy. Therefore, the polyhedral bodies were inferred to be carboxysomes. Native electrophoresis of isolated carboxysomes demonstrated a major band which comigrated with the purified RuBP carboxylase and three minor bands of lower molecular weight. Sodium dodecyl-sulphate (SDS) gel electrophoresis of SDS-dissociated carboxysomes demonstrated nine major polypeptides two of which were the large and small subunits of RuBP carboxylase. The RuBP carboxylase subunits represented 21% of the total carboxysomal protein. The most abundant polypeptide had a molecular weight of 40,500. Knowledge of carboxysome composition is necessary to provide an understanding of carboxysome function.Abbreviations FPLC fast performance liquid chromatography - IB isolation buffer - PAGE polyacrylamide gel electrophoresis - RuBP carboxylase - ribulose 1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl-sulphate  相似文献   
46.
Summary A total of 252 chromosomes from 126 patients with phenylalanine hydroxylase (PAH) deficiencies were analyzed for both mutant genotypes and restriction fragment length polymorphism (RFLP) haplotypes at the PAH locus. The mutant genes studied originated either from Western Europe (116 alleles) or from Mediterranean countries (136 alleles). Only 27% of all mutant alleles were found to carry identified mutations, particularly mutations at codon 252 (2.3%), 261 (7.5%), 280 (6.3%), 408 (3.5%) and at the splice donor site of intron 12 (6.3%). The mutant genotypes were associated with RFLP haplotypes 7, 1, 38, 2 and 3 at the PAH locus respectively. Except for the splice mutation of intron 12, these associations were preferential, but not exclusive, since the other four mutations were found on the background of at least two RFLP haplotypes. These results, together with the observation that 85% of PAH deficient patients are heterozygotes for their mutant genotypes, emphasize the great heterogeneity of PAH deficiencies in Mediterranean countries and hamper systematic DNA testing for carrier status in this population.  相似文献   
47.
RFLPs of 68 normal and 74 mutant alleles at the phenylalanine hydroxylase (PAH) locus were determined in 37 French kindreds. A total of 23 haplotypes, including 18 normal and 16 mutant alleles, were observed. Two-thirds of all mutant alleles were confined within only four haplotypes, while the last third was accounted for by 12 haplotypes, including eight haplotypes absent from Caucasian pedigrees reported thus far. Several mutant haplotypes were present in typical phenylketonuria only, others were present in variants only, and some were present in both. In addition, a particular mutant haplotype (haplotype 2) was found to harbor different mutations in our series, resulting in either typical phenylketonuria or in mild hyperphenylalaninemias. The diploid combination of so many mutant haplotypes in PAH-deficient patients and of compound heterozygosity at the PAH locus in southern Europe might account for the broad spectrum of individual phenotypes observed in France.  相似文献   
48.
49.
Queuosine (Q), 7-[(4,5-cis-dihydroxy-2-cyclopentene-1-yl)-amino)methyl)-7- deazaguanosine, and Q derivatives usually replace guanosine in the anticodon of tRNAs(GUN) of eubacteria and of cytoplasmic and mitochondrial tRNAs of lower and higher eucaryotes except yeasts. Q appears to be synthesized de novo exclusively in eubacteria, and the free-base queuine serves as a nutrient factor for eucaryotes. Recently, a Q derivative, oQ, containing a 2,3-epoxy-4,5-dihydroxycyclopentane ring, has been identified in Escherichia coli tRNA(Tyr). Here we show that oQ is formed when E. coli or Salmonella typhimurium is grown in glucose-salt medium. The formation of oQ was independent of molecular oxygen, and oQ-tRNAs were converted to Q-tRNAs by adding cobalamin to the growth medium. Under strictly anaerobic conditions, considerable amounts of Q were present in E. coli and S. typhimurium tRNAs when the bacteria were grown in the presence of cobalt ions with glycerol as the carbon source and fumarate as the electron acceptor. Under these conditions, the biosynthesis of cobalamin was induced. The results suggest that oQ is derived from ribose and that oQ is finally reduced to Q by a cobamide-dependent enzyme.  相似文献   
50.
J774 macrophages exposed to medium containing cholesterol-rich phospholipid dispersions accumulate cholesteryl ester. Supplementing this medium with 100 micrograms oleate/ml increased cellular cholesteryl ester contents 3-fold. Cell retinyl ester contents increased 8-fold when medium containing retinol dispersed in dimethyl sulfoxide was supplemented with oleate. These increases were not the result of increases in total lipid uptake by the cells but rather of redistribution of cholesterol and retinol into their respective ester pools. Effective oleate concentration of 15-30 micrograms/ml increased cellular retinyl and cholesteryl ester contents. The effective oleate concentration was reduced to 5 micrograms/ml when the fatty acid/albumin molar ratio was increased. The oleate-stimulated increase in cholesterol esterification was blocked by incubating cells with Sandoz 58-035, a specific inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), indicating that the effect of fatty acid exposure is mediated through changes in ACAT activity. When cholesterol or retinol was added to cells which had been exposed to oleate for 24 h to provide a triacylglycerol store, the cellular contents of cholesteryl or retinyl ester were also significantly increased compared to cells not previously exposed to oleate. The oleate-stimulated increase in the esterification of cholesterol and/or retinol was also observed in P388D1 macrophages, human (HepG2) and rat (Fu5AH) hepatomas, human fibroblasts, rabbit aortic smooth muscle cells and MCF-7 breast carcinoma cells. In addition to oleate, a number of other fatty acids increased retinol esterification in J774 macrophages; however, cellular cholesterol esterification in these cells was increased only by unsaturated fatty acids and was inhibited in the presence of saturated fatty acids. Although the cellular uptake of radiolabeled oleate and palmitate was similar, a significant difference in the distribution of these fatty acids among the lipid classes was observed. These data demonstrate that exogenous fatty acids are one factor that regulate cellular cholesteryl and retinyl ester contents in cultured cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号