全文获取类型
收费全文 | 11908篇 |
免费 | 965篇 |
国内免费 | 11篇 |
专业分类
12884篇 |
出版年
2023年 | 62篇 |
2022年 | 113篇 |
2021年 | 240篇 |
2020年 | 109篇 |
2019年 | 154篇 |
2018年 | 217篇 |
2017年 | 168篇 |
2016年 | 293篇 |
2015年 | 510篇 |
2014年 | 595篇 |
2013年 | 798篇 |
2012年 | 901篇 |
2011年 | 929篇 |
2010年 | 579篇 |
2009年 | 502篇 |
2008年 | 775篇 |
2007年 | 784篇 |
2006年 | 711篇 |
2005年 | 686篇 |
2004年 | 683篇 |
2003年 | 638篇 |
2002年 | 568篇 |
2001年 | 121篇 |
2000年 | 86篇 |
1999年 | 131篇 |
1998年 | 173篇 |
1997年 | 109篇 |
1996年 | 89篇 |
1995年 | 95篇 |
1994年 | 103篇 |
1993年 | 93篇 |
1992年 | 80篇 |
1991年 | 54篇 |
1990年 | 59篇 |
1989年 | 55篇 |
1988年 | 56篇 |
1987年 | 38篇 |
1986年 | 35篇 |
1985年 | 38篇 |
1984年 | 45篇 |
1983年 | 36篇 |
1982年 | 35篇 |
1981年 | 40篇 |
1980年 | 45篇 |
1979年 | 37篇 |
1978年 | 23篇 |
1977年 | 25篇 |
1976年 | 20篇 |
1974年 | 20篇 |
1973年 | 23篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Catherine Murphy Sarah Hotchkiss Jenny Worthington Stephanie R. McKeown 《Journal of applied phycology》2014,26(5):2211-2264
This review discusses studies on marine macroalgae that have been investigated for their potential as sources of novel anti-cancer drugs. The review highlights the very large number of studies of crude, partially purified and purified seaweed extracts, collected from many locations, which have shown potential as sources of potent anti-cancer drugs when tested in vitro and/or in vivo. The activity of polysaccharides, polyphenols, proteinaceous molecules, carotenoids, alkaloids, terpenes and others is described here. In some reports, mechanistic studies have identified specific inhibitory activity on a number of key cellular processes including apoptosis pathways, telomerase and tumour angiogenesis. However, despite the potential shown by these studies, translation to clinically useful preparations is almost non-existent. It is hoped this review will serve as a source document and guide for those carrying out research into the potential use of macroalgae as a source of novel anti-cancer agents. 相似文献
142.
Catherine Zinglé Lionel Kuntz Denis Tritsch Catherine Grosdemange-Billiard Michel Rohmer 《Bioorganic & medicinal chemistry letters》2012,22(21):6563-6567
Fosmidomycin derivatives in which the hydroxamic acid group has been replaced by several bidentate chelators as potential hydroxamic alternatives were prepared and tested against the DXR from Escherichia coli. These results illustrate the predominant role of the hydroxamate functional group as the most effective metal binding group in DXR inhibitors. 相似文献
143.
Summary By phase microscopy of living cells the cause of a maternally-inherited variegated, spontaneous mutation of Nicotiana tabacum L. cv. Turkish Samsun was shown to be the presence of defective chloroplasts. These were intermingled with normal chloroplasts in some of the cells of the mesophyll tissue. In young, expanding leaves, the defective chloroplasts contain traces of chlorophylls a and b in the same ratio as found in normal chloroplasts, but only one-thirtieth of the quantity. As the defective chloroplasts mature, the green pigments disappear. The defective chloroplasts thus appear to be greatly deficient in thylakoid membranes. From their dynamic changes in shape, the defective chloroplasts appear to consist almost entirely of mobile phase, the structure which surrounds the thylakoid system of membranes of normal chloroplasts of higher plants. Consistent with this idea, two constitutents located in the mobile phase of normal chloroplasts—70S ribosomes and Fraction I protein—were detected in defective chloroplasts. The Fraction I protein was unchanged in specific ribulose diphosphate carboxylase activity from enzyme isolated from normal chloroplasts. Speculations are presented that the mutation in chloroplast DNA responsible for the formation of defective chloroplasts cannot be attributed to cistrons coding for the protein of Photosystem II, chloroplast ribosomal RNA or proteins, Fraction I protein, or the DNA-dependent RNA polymerase of chloroplasts. 相似文献
144.
Human follicle stimulating hormone is a pituitary glycoprotein that is essential for the maintenance of ovarian follicle development and testicular spermatogenesis. Like other members of the glycoprotein hormone family, it contains a common a subunit and a hormone specific subunit. Each subunit contains two glycosylation sites. The specific structures of the oligosaccharides of human follicle stimulating hormone have been shown to influence both thein vitro andin vivo bioactivity. Since the carbohydrate structure of a protein reflects the glycosylation apparatus of the host cells in which the protein is expressed, we examined the isoform profiles,in vitro bioactivity and metabolic clearance of a preparation of purified recombinant human follicle stimulating hormone derived from a stable, transfected Sp2/0 myeloma cell line, and pituitary human follicle stimulating hormone. Isoelectric focussing and chromatofocussing studies of human follicle stimulating hormone preparations both showed a more basic isoform profile for the recombinant human follicle stimulating hormone compared to that of pituitary human follicle stimulating hormone. The recombinant human follicle stimulating hormone had a significantly higher radioreceptor activity compared to that of pituitary human follicle stimulating hormone, consistent with a greaterin vitro potency. Pharmacokinetic studies in rats indicated a similar terminal half life (124 min) to that of the pituitary human follicle stimulating hormone (119 min). Preliminary carbohydrate analysis showed recombinant human follicle stimulating hormone to contain high mannose and/or hybrid type, in addition to complex type carbohydrate chains, terminating with both2,3 and2,6 linked sialic acids. These results demonstrate that recombinant human follicle stimulating hormone made in the Sp2/0 myeloma cells is sialylated, has a more basic isoform profile, and has a greaterin vitro biological potency compared to those of the pituitary human follicle stimulating hormone. 相似文献
145.
Fiona J. Hemming Laurent Pays Ariane Soubeyran Catherine Larruat Raymond Saxod 《Cell and tissue research》1994,277(3):519-529
In bird skin, nerve fibres develop in the dermis but do not enter the epidermis. In co-cultures of 7-day-old chick embryo dorsal root ganglia and epidermis, the neurites also avoid the epidermis. Previous studies have shown that chondroitin sulphate proteoglycans may be involved. Chondroitin sulphate has therefore been visualized by immunocytochemistry, using themonoclonal antibody CS-56, both in vivo and in vitro using light and electron microscopy. Its distribution was compared to those of 2 other chondroitin sulphate epitopes and to that of the growing nerve fibres. In cultures of epidermis from 7-day-old embryonic chicks, immunoreactivity is found uniformly around the epidermal cells while at 7.5 days the distribution in dermis is heterogeneous, and particularly marked in feather buds. In vivo, chondroitin sulphate immunoreactivity is detected in the epidermis, on the basal lamina, on the surfaces of fibroblasts and along collagen fibrils. This localization is complementary to the distribution of cutaneous nerves. Chondroitin sulphate in the basal lamina could prevent innervation of the epidermis and the dermal heterogeneities could partly explain the nerve fibres surrounding the base of the feathers. Chondroitin sulphate could therefore be important for neural guidance in developing chick skin. 相似文献
146.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4
+-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased. 相似文献
147.
Catherine M. Zettel Nalen Sandra A. Allan James J. Becnel Phillip E. Kaufman 《Journal of vector ecology》2013,38(1):182-187
The impact of the presence of larval mosquito pathogens with potential for biological control on oviposition choice was evaluated for three mosquito species/pathogen pairs present in Florida. These included Aedes aegypti infected with Edhazardia aedis, Aedes albopictus infected with Vavraia culicis, and Culex quinquefasciatus infected with Culex nigripalpus nucleopolyhedrovirus (CuniNPV). Two‐choice oviposition bioassays were performed on each host and pathogen species with one oviposition cup containing infected larvae and the other cup containing uninfected larvae (control). Both uninfected and E. aedis‐infected female Ae. aegypti laid significantly fewer eggs in oviposition cups containing infected larvae. Uninfected gravid female Ae. albopictus and Cx. quinquefasciatus oviposited equally in cups containing uninfected larvae or containing larvae infected with V. culicis or CuniNPV, respectively. Gravid female Ae. albopictus infected with V. culicis did not display ovarian development and did not lay eggs. The decreased oviposition by gravid Ae. aegypti in containers containing E. aedis‐infected larvae may indicate that the infected larvae produce chemicals deterring oviposition. 相似文献
148.
149.
Megan J. Kelly-Slatten Catherine E. Stewart Malak M. Tfaily Julie D. Jastrow Abigail Sasso Marie-Anne de Graaff 《Global Change Biology Bioenergy》2023,15(5):613-629
Recent studies have indicated that the C4 perennial bioenergy crops switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) accumulate significant amounts of soil carbon (C) owing to their extensive root systems. Soil C accumulation is likely driven by inter- and intraspecific variability in plant traits, but the mechanisms that underpin this variability remain unresolved. In this study we evaluated how inter- and intraspecific variation in root traits of cultivars from switchgrass (Cave-in-Rock, Kanlow, Southlow) and big bluestem (Bonanza, Southlow, Suther) affected the associations of soil C accumulation across soil fractions using stable isotope techniques. Our experimental field site was established in June 2008 at Fermilab in Batavia, IL. In 2018, soil cores were collected (30 cm depth) from all cultivars. We measured root biomass, root diameter, specific root length, bulk soil C, C associated with coarse particulate organic matter (CPOM) and fine particulate organic matter plus silt- and clay-sized fractions, and characterized organic matter chemical class composition in soil using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry. C4 species were established on soils that supported C3 grassland for 36 years before planting, which allowed us to use differences in the natural abundance of stable C isotopes to quantify C4 plant-derived C. We found that big bluestem had 36.9% higher C4 plant-derived C compared to switchgrass in the CPOM fraction in the 0–10 cm depth, while switchgrass had 60.7% higher C4 plant-derived C compared to big bluestem in the clay fraction in the 10–20 cm depth. Our findings suggest that the large root system in big bluestem helps increase POM-C formation quickly, while switchgrass root structure and chemistry build a mineral-bound clay C pool through time. Thus, both species and cultivar selection can help improve bioenergy management to maximize soil carbon gains and lower CO2 emissions. 相似文献
150.
Timothy Hoggard Erika Shor Carolin A. Müller Conrad A. Nieduszynski Catherine A. Fox 《PLoS genetics》2013,9(9)
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. 相似文献