首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11959篇
  免费   971篇
  国内免费   11篇
  12941篇
  2023年   62篇
  2022年   115篇
  2021年   242篇
  2020年   107篇
  2019年   153篇
  2018年   216篇
  2017年   166篇
  2016年   289篇
  2015年   510篇
  2014年   596篇
  2013年   802篇
  2012年   900篇
  2011年   930篇
  2010年   585篇
  2009年   500篇
  2008年   777篇
  2007年   788篇
  2006年   711篇
  2005年   685篇
  2004年   682篇
  2003年   642篇
  2002年   573篇
  2001年   131篇
  2000年   91篇
  1999年   134篇
  1998年   173篇
  1997年   109篇
  1996年   90篇
  1995年   96篇
  1994年   103篇
  1993年   94篇
  1992年   80篇
  1991年   57篇
  1990年   61篇
  1989年   56篇
  1988年   56篇
  1987年   38篇
  1986年   37篇
  1985年   37篇
  1984年   45篇
  1983年   35篇
  1982年   36篇
  1981年   41篇
  1980年   46篇
  1979年   37篇
  1978年   23篇
  1977年   26篇
  1976年   21篇
  1974年   21篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In many countries, a single cochlear implant is offered as a treatment for a bilateral hearing loss. In cases where there is asymmetry in the amount of sound deprivation between the ears, there is a dilemma in choosing which ear should be implanted. In many clinics, the choice of ear has been guided by an assumption that the reorganisation of the auditory pathways caused by longer duration of deafness in one ear is associated with poorer implantation outcomes for that ear. This assumption, however, is mainly derived from studies of early childhood deafness. This study compared outcomes following implantation of the better or poorer ear in cases of long-term hearing asymmetries. Audiological records of 146 adults with bilateral hearing loss using a single hearing aid were reviewed. The unaided ear had 15 to 72 years of unaided severe to profound hearing loss before unilateral cochlear implantation. 98 received the implant in their long-term sound-deprived ear. A multiple regression analysis was conducted to assess the relative contribution of potential predictors to speech recognition performance after implantation. Duration of bilateral significant hearing loss and the presence of a prelingual hearing loss explained the majority of variance in speech recognition performance following cochlear implantation. For participants with postlingual hearing loss, similar outcomes were obtained by implanting either ear. With prelingual hearing loss, poorer outcomes were obtained when implanting the long-term sound-deprived ear, but the duration of the sound deprivation in the implanted ear did not reliably predict outcomes. Contrary to an apparent clinical consensus, duration of sound deprivation in one ear has limited value in predicting speech recognition outcomes of cochlear implantation in that ear. Outcomes of cochlear implantation are more closely related to the period of time for which the brain is deprived of auditory stimulation from both ears.  相似文献   
992.
993.
994.
Organ size is controlled by the concerted action of biochemical and physical processes. Although mechanical forces are known to regulate cell and tissue behavior, as well as organogenesis, the precise molecular events that integrate mechanical and biochemical signals to control these processes are not fully known. The recently delineated Hippo-tumor suppressor network and its two nuclear effectors, YAP and TAZ, shed light on these mechanisms. YAP and TAZ are proto-oncogene proteins that respond to complex physical milieu represented by the rigidity of the extracellular matrix, cell geometry, cell density, cell polarity and the status of the actin cytoskeleton. Here, we review the current knowledge of how YAP and TAZ function as mechanosensors and mechanotransducers. We also suggest that by deciphering the mechanical and biochemical signals controlling YAP/TAZ function, we will gain insights into new strategies for cancer treatment and organ regeneration.  相似文献   
995.
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover.  相似文献   
996.
Cholesterol 24S-hydroxylase (CYP46A1) converts cholesterol into 24S-hydroxycholesterol in neurons and participates in cholesterol homeostasis in the central nervous system, including the retina. We aimed to evaluate the consequences of CYP46A1 inhibition by voriconazole on cholesterol homeostasis and function in the retina. Rats received daily intraperitoneal injections of voriconazole (60 mg/kg), minocycline (22 mg/kg), voriconazole plus minocycline, or vehicle during five consecutive days. The rats were submitted to electroretinography to monitor retinal functionality. Cholesterol and 24S-hydroxycholesterol were measured in plasma, brain and retina by gas chromatography-mass spectrometry. The expression of CYP46A1, and GFAP as a marker for glial activation was analyzed in the retina and brain. Cytokines and chemokines were measured in plasma, vitreous, retina and brain. Voriconazole significantly impaired the functioning of the retina as exemplified by the reduced amplitude and increased latency of the b-wave of the electroretinogram, and altered oscillary potentials. Voriconazole decreased 24S-hydroxycholesterol levels in the retina. Unexpectedly, CYP46A1 and GFAP expression was increased in the retina of voriconazole-treated rats. ICAM-1 and MCP-1 showed significant increases in the retina and vitreous body. Minocycline did not reverse the effects of voriconazole. Our data highlighted the cross talk between retinal ganglion cells and glial cells in the retina, suggesting that reduced 24S-hydroxycholesterol concentration in the retina may be detected by glial cells, which were consequently activated.  相似文献   
997.
998.
999.
The Neuropeptide FF (NPFF) system is known to modulate the effects of opioids in vivo and in vitro. In the present study, we have investigated the effect of NPFF agonists on the coupling of the Mu-opioid (MOP) receptor to G-proteins in a model of SH-SY5Y cells transfected with NPFF2 receptor, in which the neuronal anti-opioid activity of NPFF was previously reproduced. Activation of G-proteins was monitored by [35S]GTPγS binding assay and analysis of G-protein subunits associated with MOP receptors was performed by Western blotting after immunoprecipitation of the receptor. The results demonstrate that concentrations of NPFF agonists that produce a cellular anti-opioid effect, did not affect the ability of the opioid agonist DAMGO to activate G-proteins. However, at saturating concentration of agonist or when expression of receptor was high, opioid and NPFF agonists did not stimulate [35S]GTPγS binding in an additive manner, indicating that both receptors share a common fraction of a G-protein pool. In addition, stimulation of NPFF receptors in living cells modified the G-protein environment of MOP receptor by favoring its interaction with αs, αi2 and β subunits. This change in G-protein coupling to MOP receptor might participate in the mechanism by which NPFF agonists reduce the inhibitory activity of opioids.  相似文献   
1000.
The eukaryotic translation initiation factor 4GI (eIF4GI) serves as a central adapter in cap-binding complex assembly. Although eIF4GI has been shown to be sensitive to proteasomal degradation, how the eIF4GI steady-state level is controlled remains unknown. Here, we show that eIF4GI exists in a complex with NAD(P)H quinone-oxydoreductase 1 (NQO1) in cell extracts. Treatment of cells with dicumarol (dicoumarol), a pharmacological inhibitor of NQO1 known to preclude NQO1 binding to its protein partners, provokes eIF4GI degradation by the proteasome. Consistently, the eIF4GI steady-state level also diminishes upon the silencing of NQO1 (by transfection with small interfering RNA), while eIF4GI accumulates upon the overexpression of NQO1 (by transfection with cDNA). We further reveal that treatment of cells with dicumarol frees eIF4GI from mRNA translation initiation complexes due to strong activation of its natural competitor, the translational repressor 4E-BP1. As a consequence of cap-binding complex dissociation and eIF4GI degradation, protein synthesis is dramatically inhibited. Finally, we show that the regulation of eIF4GI stability by the proteasome may be prominent under oxidative stress. Our findings assign NQO1 an original role in the regulation of mRNA translation via the control of eIF4GI stability by the proteasome.In eukaryotes, eukaryotic translation initiation factor 4G (eIF4G) plays a central role in the recruitment of ribosomes to the mRNA 5′ end and is therefore critical for the regulation of protein synthesis (14). Two homologues of eIF4G, eIF4GI and eIF4GII, have been cloned (15). Although they differ in various respects, both homologues clearly function in translation initiation. The most thoroughly studied of these is eIF4GI, which serves as a scaffolding protein for the assembly of eIF4F, a protein complex composed of eIF4E (the mRNA cap-binding factor) and eIF4A (an ATP-dependent RNA helicase). Thus, via its association with the mRNA cap-binding protein eIF4E and with another translation initiation factor (eIF3) which is bound to the 40S ribosomal subunit, eIF4GI creates a physical link between the mRNA cap structure and the ribosome, thus facilitating cap-dependent translation initiation (25). eIF4GI functions also in cap-independent, internal ribosome entry site (IRES)-mediated translation initiation. For instance, upon picornavirus infection, eIF4G is rapidly attacked by viral proteases. The resulting eIF4GI cleavage products serve to reprogram the cell''s translational machinery, as the N-terminal cleavage product inhibits cap-dependent translation of host cell mRNAs by sequestering eIF4E while the C-terminal cleavage product stimulates IRES-mediated translation of viral mRNAs (23). Similarly, apoptotic caspases cleave eIF4G into an N-terminal fragment that blocks cap-dependent translation and a C-terminal fragment that is utilized for IRES-mediated translation of mRNAs encoding proapoptotic proteins (22).The regulation of eIF4GI cleavage by viral proteases or apoptotic caspases has been extensively studied. Little is known, however, about the regulation of eIF4GI steady-state levels. Yet the eIF4GI amount that exists at a given moment results from the sum of the effects of de novo synthesis and ongoing degradation. Many cellular proteins are physiologically degraded by the proteasome. This has been shown to be true for eIF4GI, as the factor can be degraded by the proteasome in vitro (5) and in living cells (6). However, how eIF4GI targeting for or protection from destruction by the proteasome is regulated remains unknown.There are two major routes to degradation by the proteasome. In the more conventional route, polyubiquitinated proteins are targeted to the 26S proteasome. Alternatively, a few proteins can be degraded by the 20S proteasome (and sometimes by the 26S proteasome) in a ubiquitin-independent manner (16). Interestingly, it has been shown recently that a few of these proteins (1, 2, 13) can be protected from degradation by the 20S proteasome by binding to the NAD(P)H quinone-oxydoreductase 1 (NQO1). It has been proposed that NQO1 may interact with the 20S proteasome and may consequently block access of target proteins to the 20S degradation core. Because eIF4GI can be degraded in vitro by the 20S proteasome (5) and since it appears that proteasomes can degrade eIF4GI in living cells independently of ubiquitination (6), we asked whether NQO1 could protect eIF4GI from degradation by the proteasome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号