首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   27篇
  2023年   3篇
  2022年   7篇
  2021年   13篇
  2020年   8篇
  2019年   8篇
  2018年   8篇
  2017年   4篇
  2016年   17篇
  2015年   22篇
  2014年   24篇
  2013年   30篇
  2012年   36篇
  2011年   39篇
  2010年   24篇
  2009年   14篇
  2008年   17篇
  2007年   21篇
  2006年   26篇
  2005年   24篇
  2004年   22篇
  2003年   26篇
  2002年   14篇
  2001年   7篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   10篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
  1989年   7篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1957年   1篇
排序方式: 共有505条查询结果,搜索用时 15 毫秒
51.
52.
Type II NADH dehydrogenase of Corynebacterium glutamicum (NDH-2) was purified from an ndh overexpressing strain. Purification conferred 6-fold higher specific activity of NADH:ubiquinone-1 oxidoreductase with a 3.5-fold higher recovery than that previously reported (K. Matsushita et al., 2000). UV-visible and fluorescence analyses of the purified enzyme showed that NDH-2 of C. glutamicum contained non-covalently bound FAD but not covalently bound FMN. This enzyme had an ability to catalyze electron transfer from NADH and NADPH to oxygen as well as various artificial quinone analogs at neutral and acidic pHs respectively. The reduction of native quinone of C. glutamicum, menaquinone-2, with this enzyme was observed only with NADH, whereas electron transfer to oxygen was observed more intensively with NADPH. This study provides evidence that C. glutamicum NDH-2 is a source of the reactive oxygen species, superoxide and hydrogen peroxide, concomitant with NADH and NADPH oxidation, but especially with NADPH oxidation. Together with this unique character of NADPH oxidation, phylogenetic analysis of NDH-2 from various organisms suggests that NDH-2 of C. glutamicum is more closely related to yeast or fungal enzymes than to other prokaryotic enzymes.  相似文献   
53.
Two isoforms of a heme oxygenase gene, ho1 and ho2, with 51% identity in amino acid sequence have been identified in the cyanobacterium Synechocystis sp. PCC 6803. Isoform-1, Syn HO-1, has been characterized, while isoform-2, Syn HO-2, has not. In this study, a full-length ho2 gene was cloned using synthetic DNA and Syn HO-2 was demonstrated to be highly expressed in Escherichia coli as a soluble, catalytically active protein. Like Syn HO-1, the purified Syn HO-2 bound hemin stoichiometrically to form a heme-enzyme complex and degraded heme to biliverdin IXalpha, CO and iron in the presence of reducing systems such as NADPH/ferredoxin reductase/ferredoxin and sodium ascorbate. The activity of Syn HO-2 was found to be comparable to that of Syn HO-1 by measuring the amount of bilirubin formed. In the reaction with hydrogen peroxide, Syn HO-2 converted heme to verdoheme. This shows that during the conversion of hemin to alpha-meso-hydroxyhemin, hydroperoxo species is the activated oxygen species as in other heme oxygenase reactions. The absorption spectrum of the hemin-Syn HO-2 complex at neutral pH showed a Soret band at 412 nm and two peaks at 540 nm and 575 nm, features observed in the hemin-Syn HO-1 complex at alkaline pH, suggesting that the major species of iron(III) heme iron at neutral pH is a hexa-coordinate low spin species. Electron paramagnetic resonance (EPR) revealed that the iron(III) complex was in dynamic equilibrium between low spin and high spin states, which might be caused by the hydrogen bonding interaction between the distal water ligand and distal helix components. These observations suggest that the structure of the heme pocket of the Syn HO-2 is different from that of Syn HO-1.  相似文献   
54.
Heme oxygenase (HO) catalyzes the catabolism of heme to biliverdin, CO, and a free iron through three successive oxygenation steps. The third oxygenation, oxidative degradation of verdoheme to biliverdin, has been the least understood step despite its importance in regulating HO activity. We have examined in detail the degradation of a synthetic verdoheme IXalpha complexed with rat HO-1. Our findings include: 1) HO degrades verdoheme through a dual pathway using either O(2) or H(2)O(2); 2) the verdoheme reactivity with O(2) is the lowest among the three O(2) reactions in the HO catalysis, and the newly found H(2)O(2) pathway is approximately 40-fold faster than the O(2)-dependent verdoheme degradation; 3) both reactions are initiated by the binding of O(2) or H(2)O(2) to allow the first direct observation of degradation intermediates of verdoheme; and 4) Asp(140) in HO-1 is critical for the verdoheme degradation regardless of the oxygen source. On the basis of these findings, we propose that the HO enzyme activates O(2) and H(2)O(2) on the verdoheme iron with the aid of a nearby water molecule linked with Asp(140). These mechanisms are similar to the well established mechanism of the first oxygenation, meso-hydroxylation of heme, and thus, HO can utilize a common architecture to promote the first and third oxygenation steps of the heme catabolism. In addition, our results infer the possible involvement of the H(2)O(2)-dependent verdoheme degradation in vivo, and potential roles of the dual pathway reaction of HO against oxidative stress are proposed.  相似文献   
55.
Chitosan-based gene delivery systems are promising candidates for non-viral gene therapy. A wide range of chitosans has been studied to optimize the properties of the DNA-chitosan complexes to yield high transfection efficiencies. An important parameter to control is the polyplex stability to allow transport towards the cells, subsequent internalization and release of DNA intracellularly. The stability of the DNA-chitosan complexes was here studied after exposure to heparin and hyaluronic acid (HA) using atomic force microscopy (AFM) and ethidium bromide (EtBr) fluorescence assay. To study the effect of polycation chain length on the polyplex stability, chitosans with a degree of polymerization (DP) varying from approximately 10 to approximately 1000 were employed for DNA compaction. Whereas HA was unable to dissociate the complexes, the degree of dissociation caused by heparin depended on both the chitosan chain length and the amount of chitosan used for complexation. When increasing the chitosan concentration, larger heparin concentrations were required for polyplex dissociation. Furthermore, increasing the chitosan chain length yielded more stable complexes. Varying the chitosan chain length thus provides a tool for controlling the ability of the polyplex to deliver therapeutic gene vectors to cells.  相似文献   
56.
The human endocrinological disorder polycystic ovary syndrome (PCOS) is a common cause of reproductive failure. Even though the cause of PCOS is unknown, hormone and immune disturbances as well as hyperactivity in the sympathetic nervous system are likely to be involved in the pathogenesis of the disease. The present study was undertaken to elucidate if rats with estradiol valerate (EV)-induced polycystic ovaries (PCO) have altered beta-endorphin concentrations in the hypothalamus and in plasma and if they have alterations in circulating immune cell populations and the activity. Repeated low-frequency (2 Hz) electroacupuncture (EA) treatments are known to modulate the release of beta-endorphin, immune responses, and the activity in the autonomic nervous system. We therefore also investigated the effect of EA treatments on the beta-endorphin and the immune systems. Low-frequency EA was given 12 times, 25 min each, over 30 days starting 2-3 days after i.m. injection of EV. The beta-endorphin concentrations in the hypothalamus and in plasma as well as the frequencies of CD4+ T cells and CD8+ T cells were significantly lower in EV-injected control rats as compared to oil-injected control rats. Repeated EA treatments in EV-injected rats significantly increased beta-endorphin concentrations in the hypothalamus. In conclusion, these findings show that both the beta-endorphinergic and the immune system are significantly impaired in rats with steroid-induced PCO and that repeated EA treatments can restore some of these disturbances.  相似文献   
57.
58.
Despite the significance of glycoproteins for extracellular matrix assembly in cartilage tissue, little is known about the regulation of the chondrocyte glycophenotype under inflammatory conditions. The present study aimed to assess the effect of IL-1β and TNF-α on specific features of the glycophenotype of primary human chondrocytes in vitro. Using LC-MS, we found that both cytokines increased overall sialylation of N- and O-glycans and induced a shift towards α-(2→3)-linked sialic acid residues in chondrocyte glycoproteins. These results were supported by quantitative PCR showing increased expression of α-(2→3) sialyltransferases in treated cells. Moreover, we found that both IL-1β and TNF-α induced a considerable shift from oligomannosidic glycans towards complex-type N-glycans. In contrast, core α-(1→6)-fucosylation of chondrocyte N-glycans was found to be reduced particularly by TNF-α. In summary, inflammatory conditions induce specific alterations of the chondrocyte glycophenotype which might affect cell-matrix interactions or the function of endogenous lectins.  相似文献   
59.
The distribution of 3-hydroxy oxylipins in Saturnispora saitoi was mapped using immunofluorescence microscopy. Fluorescence was observed on aggregating ascospores, indicating the presence of 3-hydroxy oxylipins on the surface or between ascospores. The oxylipin was identified as 3-hydroxy 9:1 using gas chromatography mass spectrometry. Furthermore, ultrastructural studies using scanning and transmission electron microscopy on ascospores revealed a clear equatorial ledge surrounding oval-shaped ascospores.  相似文献   
60.
Physical activity protects brain function in healthy individuals and those with Alzheimer's disease (AD). Evidence for beneficial effects of parental exercise on the health status of their progeny is sparse and limited to nondiseased individuals. Here, we questioned whether maternal running interferes with offspring's AD-like pathology and sought to decipher the underlying mechanisms in TgCRND8 mice. Maternal stimulation was provided by voluntary wheel running vs. standard housing during pregnancy. Following 5 mo of standard housing of transgenic and wild-type offspring, their brains were examined for AD-related pathology and/or plasticity changes. Running during pregnancy reduced β-amyloid (Aβ) plaque burden (-35%, P=0.017) and amyloidogenic APP processing in transgenic offspring and further improved the neurovascular function by orchestrating different Aβ transporters and increasing angiogenesis (+29%, P=0.022). This effect was accompanied by diminished inflammation, as indicated by reduced microgliosis (-20%, P=0.002) and down-regulation of other proinflammatory mediators, and resulted in less oxidative stress, as nitrotyrosine levels declined (-28%, P=0.029). Moreover, plasticity changes (in terms of up-regulation of reelin, synaptophysin, and ARC) were found not only in transgenic but also in wild-type offspring. We conclude that exercise during pregnancy provides long-lasting protection from neurodegeneration and improves brain plasticity in the otherwise unstimulated progeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号