首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   27篇
  2023年   3篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   8篇
  2018年   8篇
  2017年   4篇
  2016年   17篇
  2015年   22篇
  2014年   24篇
  2013年   30篇
  2012年   36篇
  2011年   39篇
  2010年   24篇
  2009年   14篇
  2008年   17篇
  2007年   21篇
  2006年   25篇
  2005年   24篇
  2004年   21篇
  2003年   26篇
  2002年   14篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   8篇
  1995年   10篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1971年   1篇
  1957年   1篇
排序方式: 共有471条查询结果,搜索用时 31 毫秒
41.
Diffusion through the extracellular matrix (ECM) is a critical step for the delivery of nanoparticles and genes. Gene delivery requires a carrier that protects the nucleic acid from degradation and facilitates transport. Chitosan is a promising carrier. To increase the circulation time, PEGylation of the carrier is performed. However, the effect of PEGylation on the transport and stability of gene delivery systems in the ECM has only been studied in solutions containing ECM components. We used polymerized collagen and collagen-hyaluronic acid (HA) gels to study the effects of PEGylation on the diffusion and stability of chitosan-DNA polyplexes. We found that PEGylation of the polyplexes was required for diffusion to occur, and PEGylation increased the dissociation between DNA and chitosan to some extent. The presence of HA had a contradictory role: it decreased the penetration depth of PEGylated polyplexes into the gels and increased the diffusion of the polyplexes being mixed into the gels.  相似文献   
42.

Background

Picropodophyllin (PPP) is a promising novel anti-neoplastic agent that efficiently kills tumor cells in vitro and causes tumor regression and increased survival in vivo. We have previously reported that PPP treatment induced moderate tolerance in two out of 10 cell lines only, and here report the acquired genomic and expression alterations associated with PPP selection over 1.5 years of treatment.

Methodology/Principal Findings

Copy number alterations monitored using metaphase and array-based comparative genomic hybridization analyses revealed largely overlapping alterations in parental and maximally tolerant cells. Gain/ amplification of the MYC and PVT1 loci in 8q24.21 were verified on the chromosome level. Abnormalities observed in connection to PPP treatment included regular gains and losses, as well as homozygous losses in 10q24.1-q24.2 and 12p12.3-p13.2 in one of the lines and amplification at 5q11.2 in the other. Abnormalities observed in both tolerant derivatives include amplification/gain of 5q11.2, gain of 11q12.1-q14.3 and gain of 13q33.3-qter. Using Nexus software analysis we combined the array-CGH data with data from gene expression profilings and identified genes that were altered in both inputs. A subset of genes identified as downregulated (ALDH1A3, ANXA1, TLR4 and RAB5A) or upregulated (COX6A1, NFIX, ME1, MAPK and TAP2) were validated by siRNA in the tolerant or parental cells to alter sensitivity to PPP and confirmed to alter sensitivity to PPP in further cell lines.

Conclusions

Long-term PPP selection lead to altered gene expression in PPP tolerant cells with increase as well as decrease of genes involved in cell death such as PTEN and BCL2. In addition, acquired genomic copy number alterations were observed that were often reflected by altered mRNA expression levels for genes in the same regions.  相似文献   
43.

Background

Pneumonia represents a major health burden. Previous work demonstrated that although the induction of inflammation is important for adequate host defense against pneumonia, an inability to regulate the host''s inflammatory response within the lung later during infection can be detrimental. Intracellular signaling pathways commonly rely on activation of kinases, and kinases play an essential role in the regulation of the inflammatory response of immune cells.

Methodology/Principal Findings

Pneumonia was induced in mice via intranasal instillation of Streptococcus (S.) pneumoniae. Kinomics peptide arrays, exhibiting 1024 specific consensus sequences for protein kinases, were used to produce a systems biology analysis of cellular kinase activity during the course of pneumonia. Several differences in kinase activity revealed by the arrays were validated in lung homogenates of individual mice using western blot. We identified cascades of activated kinases showing that chemotoxic stress and a T helper 1 response were induced during the course of pneumococcal pneumonia. In addition, our data point to a reduction in WNT activity in lungs of S. pneumoniae infected mice. Moreover, this study demonstrated a reduction in overall CDK activity implying alterations in cell cycle biology.

Conclusions/Significance

This study utilizes systems biology to provide insight into the signaling events occurring during lung infection with the common cause of community acquired pneumonia, and may assist in identifying novel therapeutic targets in the treatment of bacterial pneumonia.  相似文献   
44.
The cellular prion protein (PrP(C)) plays a fundamental role in prion disease. PrP(C) is a glycosylphosphatidylinositol (GPI)-anchored protein with two variably occupied N-glycosylation sites. In general, GPI-anchor and N-glycosylation direct proteins to apical membranes in polarized cells whereas the majority of mouse PrP(C) is found in basolateral membranes in polarized Madin-Darby canine kidney (MDCK) cells. In this study we have mutated the first, the second, and both N-glycosylation sites of PrP(C) and also replaced the GPI-anchor of PrP(C) by the Thy-1 GPI-anchor in order to investigate the role of these signals in sorting of PrP(C) in MDCK cells. Cell surface biotinylation experiments and confocal microscopy showed that lack of one N-linked oligosaccharide leads to loss of polarized sorting of PrP(C). Exchange of the PrP(C) GPI-anchor for the one of Thy-1 redirects PrP(C) to the apical membrane. In conclusion, both N-glycosylation and GPI-anchor act on polarized sorting of PrP(C), with the GPI-anchor being dominant over N-glycans.  相似文献   
45.
Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers. Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1(Δhep)) were generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in Commd1(Δhep) mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1(Δhep) mice were viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1(Δhep) mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II, neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was clearly augmented with age in Commd1(Δhep) mice. Although COMMD1 expression is associated with changes in ATP7B protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1(Δhep) mice could be detected. Despite the absence of hepatocellular toxicity in Commd1(Δhep) mice, the changes in liver copper displayed several parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the molecular mechanisms underlying hepatic copper homeostasis.  相似文献   
46.
The aims of this study were to characterize the hysterographic and histological features of the uteri and to perform immunohistochemistry with proliferating cell nuclear antigen (PCNA) in the cat endometrium at various stages of the reproductive cycle and after treatment with exogenous progestagen. Seventy-four female domestic cats submitted for routine ovariohysterectomy were categorized into six groups: inactive (n=20), follicular (n=9), luteal (n=18), and postpartum (n=12) stages of the reproductive cycle; cats given medroxyprogesterone acetate for estrus prevention (MPA group) (n=12); and cats with uterine pathological lesions (n=3). Hysterography was performed and the relation of the uterine and luminal shape in the hysterogram with the stage of the reproductive cycle as well as with any pathological conditions of the uterus was evaluated. The uteri and ovaries were thereafter surgically removed and sectioned for histological examination. The PCNA was used to demonstrate the expression of endometrial epithelial cell growth. The hysterographic appearance was found to differ between the six groups of cats. A straight uterine cavity was characteristic for cats in the inactive stage, whereas a wavy uterine cavity was characteristic for cats in the follicular stage. In the luteal stage, the luminal cavity of the uteri differed in shape with increasing progesterone concentration from straight to irregular wavy or coiled. The coil shaped uterine lumen seen in the MPA treated and pathological groups was considered also to be an expression of a progestagenic effect. Waviness and coiling of the uterine lumen was related to a proliferation of the endometrial glands, whereas irregular filling defects were indicative of endometrial cystic changes. This study is the first to demonstrate the expression of PCNA in the cat endometrium although no differences were found between the six groups of cats. The hysterographic appearance was found to differ according to stage of the reproductive cycle and pathological conditions. Thus, a normative hysterogram is now available for diagnosing the reproductive stage and uterine changes in cats developing endometrial hyperplasia with and without cystic changes.  相似文献   
47.
48.
Type II NADH dehydrogenase of Corynebacterium glutamicum (NDH-2) was purified from an ndh overexpressing strain. Purification conferred 6-fold higher specific activity of NADH:ubiquinone-1 oxidoreductase with a 3.5-fold higher recovery than that previously reported (K. Matsushita et al., 2000). UV-visible and fluorescence analyses of the purified enzyme showed that NDH-2 of C. glutamicum contained non-covalently bound FAD but not covalently bound FMN. This enzyme had an ability to catalyze electron transfer from NADH and NADPH to oxygen as well as various artificial quinone analogs at neutral and acidic pHs respectively. The reduction of native quinone of C. glutamicum, menaquinone-2, with this enzyme was observed only with NADH, whereas electron transfer to oxygen was observed more intensively with NADPH. This study provides evidence that C. glutamicum NDH-2 is a source of the reactive oxygen species, superoxide and hydrogen peroxide, concomitant with NADH and NADPH oxidation, but especially with NADPH oxidation. Together with this unique character of NADPH oxidation, phylogenetic analysis of NDH-2 from various organisms suggests that NDH-2 of C. glutamicum is more closely related to yeast or fungal enzymes than to other prokaryotic enzymes.  相似文献   
49.
Two isoforms of a heme oxygenase gene, ho1 and ho2, with 51% identity in amino acid sequence have been identified in the cyanobacterium Synechocystis sp. PCC 6803. Isoform-1, Syn HO-1, has been characterized, while isoform-2, Syn HO-2, has not. In this study, a full-length ho2 gene was cloned using synthetic DNA and Syn HO-2 was demonstrated to be highly expressed in Escherichia coli as a soluble, catalytically active protein. Like Syn HO-1, the purified Syn HO-2 bound hemin stoichiometrically to form a heme-enzyme complex and degraded heme to biliverdin IXalpha, CO and iron in the presence of reducing systems such as NADPH/ferredoxin reductase/ferredoxin and sodium ascorbate. The activity of Syn HO-2 was found to be comparable to that of Syn HO-1 by measuring the amount of bilirubin formed. In the reaction with hydrogen peroxide, Syn HO-2 converted heme to verdoheme. This shows that during the conversion of hemin to alpha-meso-hydroxyhemin, hydroperoxo species is the activated oxygen species as in other heme oxygenase reactions. The absorption spectrum of the hemin-Syn HO-2 complex at neutral pH showed a Soret band at 412 nm and two peaks at 540 nm and 575 nm, features observed in the hemin-Syn HO-1 complex at alkaline pH, suggesting that the major species of iron(III) heme iron at neutral pH is a hexa-coordinate low spin species. Electron paramagnetic resonance (EPR) revealed that the iron(III) complex was in dynamic equilibrium between low spin and high spin states, which might be caused by the hydrogen bonding interaction between the distal water ligand and distal helix components. These observations suggest that the structure of the heme pocket of the Syn HO-2 is different from that of Syn HO-1.  相似文献   
50.
Heme oxygenase (HO) catalyzes the catabolism of heme to biliverdin, CO, and a free iron through three successive oxygenation steps. The third oxygenation, oxidative degradation of verdoheme to biliverdin, has been the least understood step despite its importance in regulating HO activity. We have examined in detail the degradation of a synthetic verdoheme IXalpha complexed with rat HO-1. Our findings include: 1) HO degrades verdoheme through a dual pathway using either O(2) or H(2)O(2); 2) the verdoheme reactivity with O(2) is the lowest among the three O(2) reactions in the HO catalysis, and the newly found H(2)O(2) pathway is approximately 40-fold faster than the O(2)-dependent verdoheme degradation; 3) both reactions are initiated by the binding of O(2) or H(2)O(2) to allow the first direct observation of degradation intermediates of verdoheme; and 4) Asp(140) in HO-1 is critical for the verdoheme degradation regardless of the oxygen source. On the basis of these findings, we propose that the HO enzyme activates O(2) and H(2)O(2) on the verdoheme iron with the aid of a nearby water molecule linked with Asp(140). These mechanisms are similar to the well established mechanism of the first oxygenation, meso-hydroxylation of heme, and thus, HO can utilize a common architecture to promote the first and third oxygenation steps of the heme catabolism. In addition, our results infer the possible involvement of the H(2)O(2)-dependent verdoheme degradation in vivo, and potential roles of the dual pathway reaction of HO against oxidative stress are proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号