首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7389篇
  免费   536篇
  国内免费   1篇
  2023年   20篇
  2022年   78篇
  2021年   146篇
  2020年   94篇
  2019年   169篇
  2018年   214篇
  2017年   160篇
  2016年   271篇
  2015年   347篇
  2014年   440篇
  2013年   537篇
  2012年   573篇
  2011年   560篇
  2010年   358篇
  2009年   287篇
  2008年   438篇
  2007年   425篇
  2006年   352篇
  2005年   340篇
  2004年   341篇
  2003年   308篇
  2002年   270篇
  2001年   107篇
  2000年   87篇
  1999年   80篇
  1998年   60篇
  1997年   47篇
  1996年   75篇
  1995年   35篇
  1994年   44篇
  1993年   36篇
  1992年   61篇
  1991年   53篇
  1990年   44篇
  1989年   35篇
  1988年   39篇
  1987年   30篇
  1986年   28篇
  1985年   32篇
  1984年   19篇
  1983年   32篇
  1982年   26篇
  1981年   25篇
  1980年   24篇
  1979年   18篇
  1977年   18篇
  1976年   16篇
  1975年   19篇
  1974年   17篇
  1972年   15篇
排序方式: 共有7926条查询结果,搜索用时 15 毫秒
991.
Although abnormalities in cardiac fatty acid metabolism are involved in the development of several cardiac pathologies, the mechanisms underlying these changes are not well understood. Given the prominent role played by peroxisome proliferator-activated receptor β/δ (PPARβ/δ in cardiac fatty acid metabolism, the aim of this study was to examine the effects of nuclear factor (NF)-κB activation on the activity of this nuclear receptor. Embryonic rat heart-derived H9c2 cells stimulated with lipopolysaccharide (LPS) showed a reduction (38%, P < 0.05) in the mRNA levels of the PPARβ/δ-target gene pyruvatedehydrogenase kinase 4 (PDK4) that was prevented in the presence of the NF-κB inhibitors parthenolide (10 μM) and atorvastatin (10 μM). Electrophoretic mobility shift assay revealed that both parthenolide and atorvastatin significantly decreased LPS-stimulated NF-κB binding activity in H9c2 cardiac cells. LPS-stimulation of H9c2 cardiac cells also led to a 30% reduction (P < 0.05) in the mRNA levels of PPARγ Coactivator 1 (PGC-1) that was consistent with the reduction in the protein levels of this coactivator. In the presence of either atorvastatin or parthenolide, the reduction in PGC-1 expression was prevented. Co-immunoprecipitation studies showed that LPS-stimulation led to a reduction in the physical interaction between PGC-1 and PPARβ/δ and that this reduction was prevented in the presence of atorvastatin. Finally, electrophoretic mobility shift assay revealed that parthenolide and atorvastatin prevented LPS-mediated reduction in PPARβ/δ binding activity in H9c2 cardiac cells. These results suggest that LPS-mediated NF-κB activation inhibits the expression of genes involved in fatty acid metabolism by a mechanism involving reduced expression of PGC-1, which in turn affects the PPARβ/δ transactivation of target genes involved in cardiac fatty acid oxidation.  相似文献   
992.
Antioxidant Defenses in Fish: Biotic and Abiotic Factors   总被引:19,自引:0,他引:19  
Oxygen in its molecular state O2, is essential for many metabolic processes that are vital to aerobic life. Aerobic organisms cannot exist without oxygen, which nevertheless is inherently dangerous to their lives. Like all aerobic organisms, fish are also susceptible to the effects of reactive oxygen and have inherent and effective antioxidant defenses that are well described in the literature. This review investigates the influence of different biotic and abiotic factors (age, phylogenetic position, feeding behavior, environmental factors, oxygen, temperature, presence of xenobiotics) on antioxidant defenses in fish. Studies of antioxidant activity in fish open a number of novel research lines providing greater knowledge of fish physiology, which will benefit various aspects of fish farming and artificial production.  相似文献   
993.
994.
Bovine lactoferrin catalyzes the hydrolysis of synthetic substrates (i.e., Z-aminoacyl-7-amido-4-methylcoumarin). Values of Km and kcat for the bovine lactoferrin catalyzed hydrolysis of Z-Phe-Arg-7-amido-4-methylcoumarin are 50 microM and 0.03 s(-1), respectively, the optimum pH value is 7.5 at 25 degrees C. The bovine lactoferrin substrate specificity is similar to that of trypsin, while the hydrolysis rate is several orders of magnitude lower than that of trypsin. The bovine lactoferrin catalytic activity is irreversibly inhibited by the serine-protease inhibitors PMSF and Pefabloc. Moreover, both iron-saturation of the protein and LPS addition strongly inhibit the bovine lactoferrin activity. Interestingly, bovine lactoferrin undergoes partial auto-proteolytic cleavage at positions Arg415-Lys416 and Lys440-Lys441. pKa shift calculations indicate that several Ser residues of bovine lactoferrin display the high nucleophilicity required to potentially catalyze substrate cleavage. However, a definitive identification of the active site awaits further studies.  相似文献   
995.
996.
997.
998.
Nine indigenous cachaça Saccharomyces cerevisiae strains and one wine strain were compared for their trehalose metabolism characteristics under non-lethal (40°C) and lethal (52°C) heat shock, ethanol shock and combined heat and ethanol stresses. The yeast protection mechanism was studied through trehalose concentration, neutral trehalase activity and expression of heat shock proteins Hsp70 and Hsp104. All isolates were able to accumulate trehalose and activate neutral trehalase under stress conditions. No correlation was found between trehalose levels and neutral trehalase activity under heat or ethanol shock. However, when these stresses were combined, a positive relationship was found. After pre-treatment at 40°C for 60 min, and heat shock at 52°C for 8 min, eight strains maintained their trehalose levels and nine strains improved their resistance against lethal heat shock. Among the investigated stresses, heat treatment induced the highest level of trehalose and combined heat and ethanol stresses activated the neutral trehalase most effectively. Hsp70 and Hsp104 were expressed by all strains at 40°C and all of them survived this temperature although a decrease in cell viability was observed at 52°C. The stress imposed by more than 5% ethanol (v/v) represented the best condition to differentiate strains based on trehalose levels and neutral trehalase activity. The investigated S. cerevisiae strains exhibited different characteristics of trehalose metabolism, which could be an important tool to select strains for the cachaça fermentation process.  相似文献   
999.
The larvae of scarab beetles, known as “white grubs” and belonging to the genera Phyllophaga and Anomala (Coleoptera: Scarabaeidae), are regarded as soil-dwelling pests in Mexico. During a survey conducted to find pathogenic bacteria with the potential to control scarab larvae, a native Serratia sp. (strain Mor4.1) was isolated from a dead third-instar Phyllophaga blanchardi larva collected from a cornfield in Tres Marías, Morelos, Mexico. Oral bioassays using healthy P. blanchardi larvae fed with the Mor4.1 isolate showed that this strain was able to cause an antifeeding effect and a significant loss of weight. Mortality was observed for P. blanchardi, P. trichodes, and P. obsoleta in a multidose experiment. The Mor4.1 isolate also caused 100% mortality 24 h after intracoelomic inoculation of the larvae of P. blanchardi, P. ravida, Anomala donovani and the lepidopteran insect Manduca sexta. Oral and injection bioassays were performed with concentrated culture broths of the Mor4.1 isolate to search for disease symptoms and mortality caused by extracellular proteins. The results have shown that Mor4.1 broths produce significant antifeeding effects and mortality. Mor4.1 broths treated with proteinase K lost the ability to cause disease symptoms and mortality, in both the oral and the injection bioassays, suggesting the involvement of toxic proteins in the disease. The Mor4.1 isolate was identified as a putative Serratia entomophila Mor4.1 strain based on numerical taxonomy and phylogenetic analyses done with the 16S rRNA gene sequence. The potential of S. entomophila Mor4.1 and its toxins to be used in an integrated pest management program is discussed.  相似文献   
1000.
Planar lipid bilayers, e.g., black lipid membranes (BLM) and solid supported membranes (SSM), have been employed to investigate charge movements during the reaction cycle of P-type ATPases. The BLM/SSM method allows a direct measurement of the electrical currents generated by the cation transporter following chemical activation by a substrate concentration jump. The electrical current transients provides information about the reaction mechanism of the enzyme. In particular, the BLM/SSM technique allows identification of electrogenic steps which in turn may be used to localize ion translocation during the reaction cycle of the pump. In addition, using the high time resolution of the technique, especially when rapid activation via caged ATP is employed, rate constants of electrogenic and electroneutral steps can be determined. In the present review, we will discuss the main results obtained by the BLM and SSM methods and how they have contributed to unravel the transport mechanism of P-type ATPases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号