首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1216篇
  免费   83篇
  1299篇
  2024年   1篇
  2023年   4篇
  2022年   20篇
  2021年   21篇
  2020年   21篇
  2019年   33篇
  2018年   39篇
  2017年   19篇
  2016年   63篇
  2015年   75篇
  2014年   71篇
  2013年   97篇
  2012年   90篇
  2011年   112篇
  2010年   62篇
  2009年   38篇
  2008年   69篇
  2007年   86篇
  2006年   72篇
  2005年   55篇
  2004年   46篇
  2003年   50篇
  2002年   30篇
  2001年   8篇
  2000年   11篇
  1999年   11篇
  1998年   10篇
  1997年   11篇
  1996年   18篇
  1995年   4篇
  1994年   13篇
  1993年   3篇
  1992年   8篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1299条查询结果,搜索用时 15 毫秒
131.
132.
Marine bivalves accumulate large amounts of bacteria from the environment (mainly Vibrionaceae and coliforms). Although persistence of different bacteria in bivalve tissues largely depends on their sensitivity to the bactericidal activity of circulating haemocytes and haemolymph soluble factors, the mechanisms involved in bacteria-host cell interactions in these invertebrates are largely unknown. In the mussel Mytilus, differences in interactions between haemocytes and different Escherichia coli and Vibrio cholerae strains [E. coli MG155, a wild-type strain carrying type 1 fimbriae, and its unfimbriated derivative, AAEC072 Deltafim; V. cholerae O1 El Tor biotype strain N16961, carrying the mannose-sensitive haemagglutinin (MSHA), and its MSHA mutant] lead to differences in bactericidal activity in the presence of serum. Here we show that different bacteria induced distinct patterns of phosphorylation of mitogen-activated protein kinases (MAPKs), in particular of the stress-activated MAPKs involved in the immune response. Differences in phosphorylation of PKC-like proteins were also observed. The results support the hypothesis that, like in mammalian host cells, different bacteria can modulate the signalling pathways of mussel haemocytes. The lower anti-bacterial activity towards the mutant E. coli strain and wild-type V. cholerae compared with wild E. coli may result from a reduced capacity of activating MAPKs. Moreover, the mutant V. cholerae strain that was the most resistant to the haemocyte bactericidal activity induced downregulation of cell signalling and showed the strongest effect on lysosomal membrane stability, evaluated as a marker of bivalve cell stress. These data suggest that certain bacteria could evade the bactericidal activity of mussel haemocytes through disruption of the host signalling pathways.  相似文献   
133.
Combination of conventional histology and the three-dimensional spatial view of tissue structures offers new prospects for understanding and diagnosing nature and development of human diseases. The essential technical problem related to three-dimensional reconstruction in histopathology is represented by the correct alignment of serial sections. During the past years several methods have been proposed but failed to become popular because of their limits in terms of time consume and restricted applicability. We aimed to overcome this problem by applying the technology of Tissue Array, thus by positioning adequate fiducial markers from specific "donor" blocks into the "recipient" paraffin block of interest. Digitized pictures of serially cut sections were aligned according to the tissue markers embedded by Tissue Array, and then processed with specific softwares for three-dimensional reconstruction. Thirteen models, including fetal hearts, breast and thyroid carcinomas, were elaborated. We found the procedure to be easy, fast and reproducible. Moreover, by selectively embedding the fiducial markers according to specific angles, the Tissue Arrays can be exploited in order to establish the distance between sections. This original methodology of incorporating Tissue Arrays into paraffin blocks as fiducial markers for three-dimensional reconstruction has a potential impact on histology for research purposes and diagnostic applications.  相似文献   
134.
Agkistrodon contortrix laticinctus myotoxin is a Lys(49)-phospholipase A(2) (EC 3.1.1.4) isolated from the venom of the serpent A. contortrix laticinctus (broad-banded copperhead). We present here three monomeric crystal structures of the myotoxin, obtained under different crystallization conditions. The three forms present notable structural differences and reveal that the presence of a ligand in the active site (naturally presumed to be a fatty acid) induces the exposure of a hydrophobic surface (the hydrophobic knuckle) toward the C terminus. The knuckle in A. contortrix laticinctus myotoxin involves the side chains of Phe(121) and Phe(124) and is a consequence of the formation of a canonical structure for the main chain within the region of residues 118-125. Comparison with other Lys(49)-phospholipase A(2) myotoxins shows that although the knuckle is a generic structural motif common to all members of the family, it is not readily recognizable by simple sequence analyses. An activation mechanism is proposed that relates fatty acid retention at the active site to conformational changes within the C-terminal region, a part of the molecule that has long been associated with Ca(2+)-independent membrane damaging activity and myotoxicity. This provides, for the first time, a direct structural connection between the phospholipase "active site" and the C-terminal "myotoxic site," justifying the otherwise enigmatic conservation of the residues of the former in supposedly catalytically inactive molecules.  相似文献   
135.
136.
The aim of this study was to investigate the mechanism of activation of human heparanase, a key player in heparan sulfate degradation, thought to be involved in normal and pathologic cell migration processes. Active heparanase arises as a product of a series of proteolytic processing events. Upon removal of the signal peptide, the resulting, poorly active 65 kDa species undergoes the excision of an intervening 6 kDa fragment generating an 8 kDa polypeptide and a 50 kDa polypeptide, forming the fully active heterodimer. By engineering of tobacco etch virus protease cleavage sites at the N- and C-terminal junctions of the 6 kDa fragment, we were able to reproduce the proteolytic activation of heparanase in vitro using purified components, showing that cleavage at both sites leads to activation in the absence of additional factors. On the basis of multiple-sequence alignment of the N-terminal fragment, we conclude that the first beta/alpha/beta element of the postulated TIM barrel fold is contributed by the 8 kDa subunit and that the excised 6 kDa fragment connects the second beta-strand and the second alpha-helix of the barrel. Substituting the 6 kDa fragment with the topologically equivalent loop from Hirudinaria manillensis hyaluronidase or connecting the 8 and 50 kDa fragments with a spacer of three glycine-serine pairs resulted in constitutively active, single-chain heparanases which were comparable to the processed, heterodimeric enzyme with regard to specific activity, chromatographic profile of hydrolysis products, complete inhibition at NaCl concentrations above 600 mM, a pH optimum of pH approximately 5, and inhibition by heparin with IC(50)s of 0.9-1.5 ng/microL. We conclude that (1) the heparanase heterodimer (alpha/beta)(8)-TIM barrel fold is contributed by both 8 and 50 kDa subunits with the 6 kDa connecting fragment leading to inhibition of heparanase by possibly obstructing access to the active site, (2) proteolytic excision of the 6 kDa fragment is necessary and sufficient for heparanase activation, and (3) our findings open the way to the production of recombinant, constitutively active single-chain heparanase for structural studies and for the identification of inhibitors.  相似文献   
137.
138.
Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.  相似文献   
139.
140.
Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号