首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2006年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
EGF-like growth factors activate their ErbB receptors by promoting receptor-mediated homodimerization or, alternatively, by the formation of heterodimers with the orphan ErbB-2 through an as yet unknown mechanism. To investigate the selectivity in dimer formation by ligands, we have applied the phage display approach to obtain ligands with modified C-terminal residues that discriminate between ErbB-2 and ErbB-3 as dimerization partners. We used the epidermal growth factor/transforming growth factor alpha chimera T1E as the template molecule because it binds to ErbB-3 homodimers with low affinity and to ErbB-2/ErbB-3 heterodimers with high affinity. Many phage variants were selected with enhanced binding affinity for ErbB-3 homodimers, indicating that C-terminal residues contribute to the interaction with ErbB-3. These variants were also potent ligands for ErbB-2/ErbB-3 heterodimers despite negative selection for such heterodimers. In contrast, phage variants positively selected for binding to ErbB-2/ErbB-3 heterodimers but negatively selected for binding to ErbB-3 homodimers can be considered as "second best" ErbB-3 binders, which require ErbB-2 heterodimerization for stable complex formation. Our findings imply that epidermal growth factor-like ligands bind ErbB-3 through a multi-domain interaction involving at least both linear endings of the ligand. Apparently the ErbB-3 affinity of a ligand determines whether it can form only ErbB-2/ErbB-3 complexes or also ErbB-3 homodimers. Because no separate binding domain for ErbB-2 could be identified, our data support a model in which ErbB heterodimerization occurs through a receptor-mediated mechanism and not through bivalent ligands.  相似文献   
12.
13.
Rabies virus causes lethal brain infection in about 61000 people per year. Each year, tens of thousands of people receive anti-rabies prophylaxis with plasma-derived immunoglobulins and vaccine soon after exposure. Anti-rabies immunoglobulins are however expensive and have limited availability. VHH are the smallest antigen-binding functional fragments of camelid heavy chain antibodies, also called Nanobodies. The therapeutic potential of anti-rabies VHH was examined in a mouse model using intranasal challenge with a lethal dose of rabies virus. Anti-rabies VHH were administered directly into the brain or systemically, by intraperitoneal injection, 24 hours after virus challenge. Anti-rabies VHH were able to significantly prolong survival or even completely rescue mice from disease. The therapeutic effect depended on the dose, affinity and brain and plasma half-life of the VHH construct. Increasing the affinity by combining two VHH with a glycine-serine linker into bivalent or biparatopic constructs, increased the neutralizing potency to the picomolar range. Upon direct intracerebral administration, a dose as low as 33 µg of the biparatopic Rab-E8/H7 was still able to establish an anti-rabies effect. The effect of systemic treatment was significantly improved by increasing the half-life of Rab-E8/H7 through linkage with a third VHH targeted against albumin. Intraperitoneal treatment with 1.5 mg (2505 IU, 1 ml) of anti-albumin Rab-E8/H7 prolonged the median survival time from 9 to 15 days and completely rescued 43% of mice. For comparison, intraperitoneal treatment with the highest available dose of human anti-rabies immunoglobulins (65 mg, 111 IU, 1 ml) only prolonged survival by 2 days, without rescue. Overall, the therapeutic benefit seemed well correlated with the time of brain exposure and the plasma half-life of the used VHH construct. These results, together with the ease-of-production and superior thermal stability, render anti-rabies VHH into valuable candidates for development of alternative post exposure treatment drugs against rabies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号