首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2900篇
  免费   168篇
  国内免费   2篇
  2023年   18篇
  2022年   50篇
  2021年   93篇
  2020年   55篇
  2019年   86篇
  2018年   86篇
  2017年   83篇
  2016年   111篇
  2015年   166篇
  2014年   214篇
  2013年   231篇
  2012年   258篇
  2011年   229篇
  2010年   141篇
  2009年   119篇
  2008年   168篇
  2007年   146篇
  2006年   145篇
  2005年   116篇
  2004年   93篇
  2003年   82篇
  2002年   68篇
  2001年   43篇
  2000年   48篇
  1999年   43篇
  1998年   24篇
  1997年   23篇
  1996年   18篇
  1995年   15篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   14篇
  1990年   6篇
  1989年   4篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1981年   4篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有3070条查询结果,搜索用时 15 毫秒
991.
992.
The production of bacteriocins is frequently described in high microbial diversity environments. The aims of this study were to screen Streptococcus spp. isolated from rumen for their antibacterial potential and to determine the presence of post-translational modification genes for lantibiotic class of bacteriocins. The isolates were tested for production of antibacterial compounds by the spot-on-lawn assay. Presence of interfering factors and the sensitivity to proteinase K were evaluated. The ruminal bacteria were identified by 16S rRNA gene sequencing and the subspecific discrimination of the isolates belonging to the same specie was performed by PFGE. The presence of lantibiotic post-translational modification genes (lanB, lanC, and lanM) into bacterial genomes was performed by PCR. The bacteriocin-like inhibitory substances showed broad inhibitory activity and the producer cells were identified as S. equinus, S. lutetiensis, and S. gallolyticus. According to PFGE, the isolates identified as S. equinus belong to different strains. Three ruminal isolates showed at least one of the lantibiotic post-translational modification genes, and lanC was more frequently detected (75%). The production of broad-spectrum bacteriocin-like inhibitory substances by rumen strains suggests that antimicrobial peptides may play an important role in competition in the complex ruminal ecosystem.  相似文献   
993.
Arbuscular mycorrhizal fungi (AMF) play important key roles in the soil ecosystems as they link plants to the root-inaccessible part of soil. The aims of this study were to investigate which environmental factors influence the spatial and temporal structuring of AMF communities associated to Picconia azorica in two Azorean islands (Terceira and São Miguel islands), and investigate the seasonal variation in AMF communities between the two islands. Communities of AMF associated with P. azorica in native forest of two Azorean islands (Terceira and São Miguel) were characterised by spore morphology or molecular analysis. Forty-five AMF spore morphotypes were detected from the four fragments of P. azorica forest representing nine families of AMF. Acaulosporaceae (14) and Glomeraceae (9) were the most abundant families. AMF density and root colonisation varied significantly between islands and sampling sites. Root colonisation and spore density exhibited temporal patterns, which peaked in spring and were higher in Terceira than in São Miguel. The relative contribution of environmental factors showed that factors such as elevation, relative air humidity, soil pH, and soil available P, K, and Mg influenced AMF spore production and root colonisation. Different sporulation patterns exhibited by the members of the commonest families suggested different life strategies. Adaptation to a particular climatic and soil condition and host phenology may explain seasonal differences in sporulation patterns. Cohorts of AMF associated to P. azorica are shaped by regional processes including environmental filters such as soil properties and natural disturbance.  相似文献   
994.
995.
  • The induction of defences in response to herbivory is a key mechanism of plant resistance. While a number of studies have investigated the time course and magnitude of plant induction in response to a single event of herbivory, few have looked at the effects of recurrent herbivory. Furthermore, studies measuring the effects of the total amount and recurrence of herbivory on both direct and indirect plant defences are lacking. To address this gap, here we asked whether insect leaf herbivory induced changes in the amount and concentration of extrafloral nectar (an indirect defence) and concentration of leaf phenolic compounds (a direct defence) in wild cotton (Gossypium hirsutum).
  • We conducted a greenhouse experiment where we tested single event or recurrent herbivory effects on defence induction by applying mechanical leaf damage and caterpillar (Spodoptera frugiperda) regurgitant.
  • Single events of 25% and 50% leaf damage did not significantly influence extrafloral nectar production or concentration. Extrafloral nectar traits did, however, increase significantly relative to controls when plants were exposed to recurrent herbivory (two episodes of 25% damage). In contrast, phenolic compounds increased significantly in response to single events of  leaf damage but not to recurrent damage. In addition, we found. that local induction of extrafloral nectar production was stronger than systemic induction, whereas the reverse pattern was observed for phenolics.
  • Together, these results reveal seemingly inverse patterns of induction of direct and indirect defences in response to herbivory in wild cotton.
  相似文献   
996.
  • Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
  • We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
  • We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
  • These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
  相似文献   
997.
  • The galls induced by Ditylenchus gallaeformans (Nematoda) on leaves of Miconia albicans have unique features when compared to other galls. The nematode colonies are surrounded by nutritive tissues with promeristematic cells, capable of originating new emergences facing the larval chamber, and providing indeterminate growth to these galls. Considering enzyme activity as essential for the translocation of energetic molecules from the common storage tissue (CST) to the typical nutritive tissue (TNT), and the major occurrence of carbohydrates in nematode galls, it was expected that hormones would mediate sink strength relationships by activating enzymes in indeterminate growth regions of the galls.
  • Histochemical, immunocytochemical and quantitative analyses were made in order to demonstrate sites of enzyme activity and hormones, and comparative levels of total soluble sugars, water soluble polysaccharides and starch.
  • The source–sink status, via carbohydrate metabolism, is controlled by the major accumulation of cytokinins in totipotent nutritive cells and new emergences. Thus, reducing sugars, such as glucose and fructose, accumulate in the TNT, where they supply the energy for successive cycles of cell division and for nematode feeding. The histochemical detection of phosphorylase and invertase activities indicates the occurrence of starch catabolism and sucrose transformation into reducing sugars, respectively, in the establishment of a gradient from the CST towards the TNT. Reducing sugars in the TNT are important for the production of new cell walls during the indeterminate growth of the galls, which have increased levels of water‐soluble polysaccharides that corroborate such a hypothesis.
  • Functional relationship between plant hormone accumulation, carbohydrate metabolism and cell differentiation in D. gallaeformans‐induced galls is attested, providing new insights on cell development and plant metabolism.
  相似文献   
998.
Derived from bacterial ancestors, mitochondria have maintained their own albeit strongly reduced genome, mitochondrial DNA (mtDNA), which encodes for a small and highly specialized set of genes. MtDNA exists in tens to thousands of copies packaged in numerous nucleoprotein complexes, termed nucleoids, distributed throughout the dynamic mitochondrial network. Our understanding of the mechanisms of how cells regulate the copy number of mitochondrial genomes has been limited. Here, we summarize and discuss our recent findings that Mip1/POLG (mitochondrial DNA polymerase gamma) critically controls mtDNA copy number by operating in 2 opposing modes, synthesis and, unexpectedly, degradation of mtDNA, when yeast cells face nutrient starvation. The balance of the 2 modes of Mip1/POLG and thus mtDNA copy number dynamics depends on the integrity of macroautophagy/autophagy, which sustains continuous synthesis and maintenance of mtDNA. In autophagy-deficient cells, a combination of nucleotide insufficiency and elevated mitochondrial ROS production impairs mtDNA synthesis and drives mtDNA degradation by the 3?-5?-exonuclease activity of Mip1/POLG resulting in mitochondrial genome depletion and irreversible respiratory deficiency.

Abbrivations: mtDNA: mitochondrial DNA; mtDCN: mitochondrial DNA copy number.  相似文献   
999.
The aim of this study was to test if changes in land use alter the isotopic signature of fish species, promoting changes in the trophic position and food resource partitioning between these consumers. Three different systems were investigated: pasture streams (n = 3), streams in sugar cane plantations (n = 3) and reference streams (n = 3). Fish species Aspidoras fuscoguttatus, Astyanax altiparanae, Characidium zebra, Hisonotus piracanjuba and Knodus moenkhausii were selected, and their nitrogen and carbon isotopic compositions were estimated to assess changes in the trophic level and partitioning of food items consumed. The composition of δ13C (‰) only differed among the land use categories for A. altiparanae, H. piracanjuba and K. moenkhausii. Resource partitioning was different for all species, with changes in the sources or proportions they consumed in each land use category, but only A. altiparanae introduced new food sources in large quantity in altered land uses. It is important to note, however, that the results from the resource partitioning analysis are limited due to large overlapping of isotopic signatures between the analysed food resources. All fish species exhibited variation in δ15N (‰), with the highest values found in streams under sugar cane or pasture influence. Despite the variation in nitrogen isotopic values, only C. zebra and H. piracanjuba displayed changes in trophic level. Therefore, it is believed that the increase in the δ15N (‰) value of the individuals collected in streams under the influence of sugar cane or pasture was due to the greater influence of livestock dung and chemical and organic fertilizers. The results also highlight the importance of studying consumer species along with all forms of resources available at each location separately, because the signatures of these resources also vary within different land uses.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号