首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   19篇
  国内免费   1篇
  2021年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   13篇
  2014年   12篇
  2013年   23篇
  2012年   20篇
  2011年   18篇
  2010年   19篇
  2009年   16篇
  2008年   11篇
  2007年   18篇
  2006年   22篇
  2005年   17篇
  2004年   14篇
  2003年   14篇
  2002年   10篇
  2001年   8篇
  2000年   10篇
  1999年   13篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有345条查询结果,搜索用时 171 毫秒
71.
72.
Z H Cai  Y Hwang  D Cue  C Catalano    M Feiss 《Journal of bacteriology》1997,179(8):2479-2485
The linear double-stranded DNA molecules in lambda virions are generated by nicking of concatemeric intracellular DNA by terminase, the lambda DNA packaging enzyme. Staggered nicks are introduced at cosN to generate the cohesive ends of virion DNA. After nicking, the cohesive ends are separated by terminase; terminase bound to the left end of the DNA to be packaged then binds the empty protein shell, i.e., the prohead, and translocation of DNA into the prohead occurs. cosB, a site adjacent to cosN, is a terminase binding site. cosB facilitates the rate and fidelity of the cosN cleavage reaction by serving as an anchoring point for gpNu1, the small subunit of terminase. cosB is also crucial for the formation of a stable terminase-DNA complex, called complex I, formed after cosN cleavage. The role of complex I is to bind the prohead. Mutations in cosB affect both cosB functions, causing mild defects in cosN cleavage and severe packaging defects. The lethal cosB R3- R2- R1- mutation contains a transition mutation in each of the three gpNu1 binding sites of cosB. Pseudorevertants of lambda cosB R3- R2- R1- DNA contain suppressor mutations affecting gpNu1. Results of experiments that show that two such suppressors, Nu1ms1 and Nu1ms3, do not suppress the mild cosN cleavage defect caused by the cosB R3- R2- R1- mutation but strongly suppress the DNA packaging defect are presented. It is proposed that the suppressing terminases, unlike the wild-type enzyme, are able to assemble a stable complex I with cosB R3- R2- R1- DNA. Observations on the adenosine triphosphatase activities and protease susceptibilities of gpNu1 of the Nu1ms1 and Nu1ms3 terminases indicate that the conformation of gpNu1 is altered in the suppressing terminases.  相似文献   
73.
C E Catalano  S J Benkovic 《Biochemistry》1989,28(10):4374-4382
The suicidal inactivation of Escherichia coli DNA polymerase I by epoxy-ATP has been previously reported (Abboud et al., 1978). We have examined in detail the mechanism of this inactivation utilizing a synthetic DNA template-primer of defined sequence. Epoxy-ATP inactivates the large fragment of DNA polymerase I (the Klenow fragment) in a time- and concentration-dependent manner (KI = 21 microM; kinact = 0.021 s-1). Concomitant with inactivation is the incorporation of epoxy-AMP into the primer strand. The elongated DNA duplex directly inhibits the polymerase activity of the enzyme (no time dependence) and is resistant to degradation by the 3'----5' exonuclease and pyrophosphorylase activities of the enzyme. Inactivation of the enzyme results from slow (4 X 10(-4) s-1) dissociation of the intact epoxy-terminated template-primer from the enzyme and is thus characterized as a tight-binding inhibition. Surprisingly, while the polymerase activity of the enzyme is completely suppressed by epoxy-ATP, the 3'----5' exonuclease activity remains intact. The data presented demonstrate that even though the polymerase site is occupied with duplex DNA, the enzyme can bind a second DNA duplex and carry out exonucleolytic cleavage.  相似文献   
74.
Addition of dextrin in the final 60% isopropanol of the Lillie-Ashburn super-saturated oil red O isopropanol technic moderately intensified the stain and decreased our required staining interval. Precipitates were decreased and the diluted solution remained usable into the second week. A saturated 60% isopropanol oil red O solution contained 33 mg/100 ml. Without dextrin the fresh supersaturated solution contains 40 mg, after 3 days 25 mg. With dextrin the fresh solution contained 130 mg dye, the 10-day-old one 100 mg/100 ml.  相似文献   
75.
Addition of dextrin in the final 60% isopropanol of the Lillie-Ashburu supersaturated oil red O isopropanol technic moderately intensified the stain and decreased our required staining interval. Precipitates were decreased and the diluted solution remained usable into the second week.

A saturated 60% isopropanol oil red O solution contained 33 mg/100 ml. Without dextrin the fresh supersaturated solution contains 40 mg, after 3 days 25 mg. With dextrin the fresh solution contained 130 mg dye, the 10-day-old one 100 mg/100 ml.  相似文献   
76.
Chloroperoxidase and H2O2 oxidize styrene to styrene oxide and phenylacetaldehyde but not benzaldehyde. The epoxide oxygen is shown by studies with H2(18)O2 to derive quantitatively from the peroxide. The epoxidation of trans-[1-2H]styrene by chloroperoxidase proceeds without detectable loss of stereochemistry, as does the epoxidation of styrene by rat liver cytochrome P-450, although much more phenylacetaldehyde is produced by chloroperoxidase than cytochrome P-450. Chloroperoxidase and cytochrome P-450 thus oxidize styrene by closely related oxygen-transfer mechanisms. Horseradish peroxidase does not oxidize styrene but does oxidize 2,4,6-trimethylphenol to 2,6-dimethyl-4-hydroxymethylphenol. The new hydroxyl group is partially labeled in incubations with H2(18)O but not H2(18)O2. The hydroxyl group thus appears to be introduced by addition of oxygen to the benzylic radical and water to the quinone methide intermediate but not by a cytochrome P-450-like oxene transfer mechanism. The results support the thesis that substrates primarily or exclusively react with the heme edge of horseradish peroxidase but are able to react with the ferryl oxygen of chloroperoxidase.  相似文献   
77.
78.
We evaluated a biomanipulation program to test for short-term changes in water quality (chlorophyll a, Secchi depth, total phosphorus) and macrozooplankton biomass following partial removal of omnivorous gizzard shad Dorosoma cepedianum. The removal occurred at a eutrophic subtropical lake, and responses were compared to an unmanipulated control lake using a before-after-control-impact paired series analysis. The removal reduced the biomass of large (>300 mm) gizzard shad by 75% over 2 years via a subsidized commercial gill net fishery. However, the total population biomass of gizzard shad was reduced by approximately 32% from an average pre-manipulation biomass of 224 kg ha−1 due to the size selectivity of the gear, which did not effectively capture small fish (<300 mm). No significant short-term changes in chlorophyll a concentration, Secchi depth, total phosphorus concentration or macrozooplankton biomass were detected following biomanipulation. The partial removal may have fallen short of the biomass reduction required to cause ecosystem responses. Our results suggest that moderate omnivore removals (i.e., <40% biomass reduction) will have little short-term benefits to these lakes, and future manipulations should use a less size-selective gear to achieve a larger total biomass reduction.  相似文献   
79.
80.
In the present investigation the diploid number 2n=48 (NF=58) has been determined for females, primary males, and secondary males ofCoris julis from the Gulf of Palermo. Differentiated sex chromosomes have not been observed in the population under study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号