首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   29篇
  2021年   2篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   21篇
  2014年   22篇
  2013年   32篇
  2012年   25篇
  2011年   25篇
  2010年   27篇
  2009年   21篇
  2008年   21篇
  2007年   26篇
  2006年   27篇
  2005年   23篇
  2004年   21篇
  2003年   15篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有455条查询结果,搜索用时 328 毫秒
411.
In this review, we discuss recent advances in biophysical virology, presenting experimental and theoretical studies on the physical properties of viruses. We focus on the double-stranded (ds) DNA bacteriophages as model systems for all of the dsDNA viruses both prokaryotic and eukaryotic. Recent studies demonstrate that the DNA packaged into a viral capsid is highly pressurized, which provides a force for the first step of passive injection of viral DNA into a bacterial cell. Moreover, specific studies on capsid strength show a strong correlation between genome length, and capsid size and robustness. The implications of these newly appreciated physical properties of a viral particle with respect to the infection process are discussed.  相似文献   
412.
The clinical behaviour of Clear Cell Renal Cell Carcinoma (CC-RCC) is often unpredictable. To fully understand the signaling pathways involved in CC-RCC development, we examined whether the 5-Lipoxygenase (5-LO), which catalyzes the biosynthesis of proinflammatory leukotrienes, is involved in renal tumorigenesis. By analyzing 46 snap-frozen primary renal cell carcinomas and their corresponding normal renal cortex biopsies, 5-LO protein levels were found to be significantly increased in the majority of CC-RCCs (P<0.001). Quantitative 5-LO mRNA expression analysis revealed up to 3-fold increased expression in the tumor tissues. There was no association between 5-LO and gender, grade or vein invasion. In contrast, increased 5-LO protein and mRNA correlated with large tumor size (>4 cm) and age of patients (P<0.001). 5-LO was frequently overexpressed in von Hippel-Lindau protein (pVHL)-reduced tumors and in Vascular Endothelial Growth Factor (VEGF)-positive tumors, which represent two frequent alterations in CC-RCC. Cell culture experiments demonstrated that VEGF expression was strongly inducible by 5-LO metabolites in RCC cell lines. The loss of pVHL expression led to high basal 5-LO and VEGF expression, which were markedly reduced by transfection with 5-LO small interfering RNA (siRNA). These results suggest that 5-LO up-regulation is an important step in renal cancer progression.  相似文献   
413.
414.

Background

Genetic variation in the human population is a key determinant of influenza disease severity. A single nucleotide polymorphism in the antiviral gene IFITM3 was linked to outcomes during the 2009 H1N1 pandemic. To identify variant host genes associated with increased virus replication and severe disease, we performed a quantitative trait locus analysis on pro-inflammatory cytokine production 48 hours after intranasal infection with highly pathogenic H5N1 influenza virus.

Results

Pro-inflammatory cytokines CCL2, TNFα and IFN-α, were measured by ELISA in lung homogenates of DBA/2J (D2), C57BL/6J (B6) and 44 different BXD recombinant inbred mouse strains. Virus titer was also assessed in a subset of these animals. CCL2 (8-fold), TNFα (24-fold) and IFN-α (8-fold) concentrations varied significantly among the different BXD RI strains. Importantly, cytokine concentration correlated very well (r =0.86-0.96, P <0.0001) with virus titer suggesting that early cytokine production is due to increased virus infection and replication. Linkage analysis of cytokine concentration revealed a significant locus on chromosome 6 associated with differences in TNFα, IFN-α and CCL2 cytokine concentration (LRS =26). This locus accounted for nearly 20% of the observed phenotypic variation in the BXD population studied. Sequence and RNA expression analysis identified several candidate host genes containing missense mutations or deletions; Samd9l, Ica1, and Slc25a13. To study the role of Slc25a13, we obtained Slc25a13 knockout line, but upon challenge with H5N1 influenza virus observed no effect on CCL2 production, or morbidity and mortality.

Conclusion

A novel genetic locus on chromosome 6 modulates early pro-inflammatory cytokine production and virus replication after highly pathogenic influenza virus infection. Candidate genes, Samd9l and Ica1, may be important for the control of influenza virus infection and pathogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1017) contains supplementary material, which is available to authorized users.  相似文献   
415.
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer''s disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer''s disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer''s therapeutics.  相似文献   
416.

Background

To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase.

Methods

A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores.

Discussion

In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications.

Electronic supplementary material

The online version of this article (doi:10.1186/1297-9686-46-50) contains supplementary material, which is available to authorized users.  相似文献   
417.
The peroxisome proliferation-activated receptor gamma (PPARgamma) is mainly expressed in the adipose tissue and integrates the control of energy, lipid, and glucose homeostasis. The present study, by means of RT-PCR, Western blot, and immunofluorescence techniques, demonstrates that human sperm express the PPARgamma. The functionality of the receptor was evidenced by 15-deoxy-12,14-prostaglandin J(2) (PGJ2) and rosiglitazone (BRL) PPARgamma-agonists that were tested on capacitation, acrosome reaction, and motility. Both treatments also increase AKT phosphorylations and influence glucose and lipid metabolism in sperm. The specificity of PGJ2 and BRL effects through PPARgamma on human sperm was confirmed by an irreversible PPARgamma antagonist, GW9662. Our findings provide evidence that human sperm express a functional PPARgamma whose activation influences sperm physiology. In conclusion, the presence of PPARgamma in male gamete broadens the field of action of this nuclear receptor, bringing us to look towards sperm as an endocrine mobile unit independent of the systemic regulation.  相似文献   
418.
Ortega ME  Catalano CE 《Biochemistry》2006,45(16):5180-5189
Terminase enzymes are common to both prokaryotic and eukaryotic double-stranded DNA viruses and are responsible for packaging viral DNA into the confines of an empty procapsid shell. In all known cases, the holoenzymes are heteroligomers composed of a large subunit that possesses the catalytic activities required for genome packaging and a small subunit that is responsible for specific recognition of viral DNA. In bacteriophage lambda, the DNA recognition protein is gpNu1. The gpNu1 subunit interacts with multiple recognition elements within cos, the packaging initiation site in viral DNA, to site-specifically assemble the packaging machinery. Motor assembly is modulated by the Escherichia coli integration host factor protein (IHF), which binds to a consensus sequence also located within cos. On the basis of a variety of biochemical data and the recently solved NMR structure of the DNA binding domain of gpNu1, we proposed a novel DNA binding mode that predicts significant bending of duplex DNA by gpNu1 (de Beer et al. (2002) Mol. Cell 9, 981-991). We further proposed that gpNu1 and IHF cooperatively bind and bend viral DNA to regulate the assembly of the packaging motor. Here, we characterize cooperative gpNu1 and IHF binding to the cos site in lambda DNA using a quantitative electrophoretic mobility shift (EMS) assay. These studies provide direct experimental support for the long presumed cooperative assembly of gpNu1 and IHF at the cos sequence of lambda DNA. Further, circular permutation experiments demonstrate that the viral and host proteins each introduce a strong bend in cos-containing DNA, but not nonspecific DNA substrates. Thus, specific recognition of viral DNA by the packaging apparatus is mediated by both DNA sequence information and by structural alteration of the duplex. The relevance of these results with respect to the assembly of a viral DNA-packaging motor is discussed.  相似文献   
419.

Background

Molecular genetic approaches have much to offer population biology. Despite recent advances, convenient techniques to develop and screen highly-resolving markers can be limiting for some applications and taxa. We describe an improved PCR-based, cloning-free, nuclear marker development procedure, in which single-stranded conformation polymorphism (SSCP) plays a central role. Sequence-variable alleles at putative nuclear loci are simultaneously identified and isolated from diploid tissues. Based on a multiple allele alignment, locus-specific primers are designed in conserved regions, minimizing 'null' alleles. Using two undescribed endemic Australian Collembola as exemplars, we outline a comprehensive approach to generating and validating suites of codominant, sequence-yielding nuclear loci for previously unstudied invertebrates.

Results

Six markers per species were developed without any baseline genetic information. After evaluating the characteristics of each new locus via SSCP pre-screening, population samples were genotyped on the basis of either DNA sequence, restriction site, or insertion/deletion variation, depending on which assay was deemed most appropriate. Polymorphism was generally high (mean of nine alleles per locus), and the markers were capable of resolving population structuring over very fine spatial scales (<100 km). SSCP coupled with targeted DNA sequencing was used to obtain genotypic, genic and genealogical information from six loci (three per species). Phylogeographic analysis identified introns as being most informative.

Conclusion

The comprehensive approach presented here feasibly overcomes technical hurdles of (i) developing suitably polymorphic nuclear loci for non-model organisms, (ii) physically isolating nuclear allele haplotypes from diploid tissues without cloning, and (iii) genotyping population samples on the basis of nuclear DNA sequence variation.  相似文献   
420.
Increased plasma atrial natriuretic peptide (ANP) levels and impaired ANP action have been reported in patients with diabetes or insulin resistance. The aim of this study was to assess the interaction between insulin and ANP in type 2 diabetes. In 12 normotensive, normoalbuminuric type 2 diabetics, we infused insulin at a high (6.6 pmol/min/kg) or, on a different day, at a low rate (0.6 pmol/min/kg) during 4 hours of isoglycemia under isovolumic, isoosmolar conditions. The normal response was established in 12 healthy volunteers using an identical protocol. Despite higher baseline ANP levels (17.7 +/- 2.8 vs. 10.8 +/- 1.8 pg/ml, p = 0.04), urinary sodium excretion was similar in diabetics and controls (113 +/- 8.5 vs. 102 +/- 8.8 mEq/24 hours, p = ns). In both groups, hyperinsulinemia caused a decrease in blood volume (0.33 +/- 0.10 l, p < 0.01), diastolic blood pressure (6 %, p < 0.02), and natriuresis. However, plasma ANP decreased in controls (from 12.7 +/- 1.9 to 8.6 +/- 1.4 pg/ml, p = 0.01) but not in type 2 diabetics (15.1 +/- 2.7 vs. 17.2 +/- 3.8 pg/ml, p = ns). We conclude that ANP release is resistant to volume stimulation in type 2 diabetic patients, and natriuresis is resistant to ANP action. This dual disruption of ANP control may play a role in blood pressure regulation in diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号