首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   29篇
  2021年   2篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   21篇
  2014年   22篇
  2013年   32篇
  2012年   25篇
  2011年   25篇
  2010年   27篇
  2009年   21篇
  2008年   21篇
  2007年   26篇
  2006年   27篇
  2005年   23篇
  2004年   21篇
  2003年   15篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有455条查询结果,搜索用时 406 毫秒
201.
PTP1B−/− mice are resistant to diet-induced obesity due to leptin hypersensitivity and consequent increased energy expenditure. We aimed to determine the cellular mechanisms underlying this metabolic state. AMPK is an important mediator of leptin''s metabolic effects. We find that α1 and α2 AMPK activity are elevated and acetyl-coenzyme A carboxylase activity is decreased in the muscle and brown adipose tissue (BAT) of PTP1B−/− mice. The effects of PTP1B deficiency on α2, but not α1, AMPK activity in BAT and muscle are neuronally mediated, as they are present in neuron- but not muscle-specific PTP1B−/− mice. In addition, AMPK activity is decreased in the hypothalamic nuclei of neuronal and whole-body PTP1B−/− mice, accompanied by alterations in neuropeptide expression that are indicative of enhanced leptin sensitivity. Furthermore, AMPK target genes regulating mitochondrial biogenesis, fatty acid oxidation, and energy expenditure are induced with PTP1B inhibition, resulting in increased mitochondrial content in BAT and conversion to a more oxidative muscle fiber type. Thus, neuronal PTP1B inhibition results in decreased hypothalamic AMPK activity, isoform-specific AMPK activation in peripheral tissues, and downstream gene expression changes that promote leanness and increased energy expenditure. Therefore, the mechanism by which PTP1B regulates adiposity and leptin sensitivity likely involves the coordinated regulation of AMPK in hypothalamus and peripheral tissues.Protein tyrosine phosphatase 1B (PTP1B) belongs to a family of tyrosine phosphatases with diverse roles in eukaryotes (2, 4). PTP1B attenuates insulin signaling by dephosphorylating the insulin receptor (19, 22, 61) and possibly IRS-1 (9, 23) and leptin signaling by dephosphorylating JAK2, which phosphorylates the leptin receptor and associated substrates (10, 45, 67). PTP1B-deficient mice are insulin hypersensitive, lean, and resistant to diet-induced obesity (20, 36) due, at least in part, to increased energy expenditure (36). The leanness can be explained by the absence of PTP1B in neurons, because neuron-specific PTP1B−/− mice also have reduced body weight and adiposity and increased energy expenditure (6). In contrast, muscle- and liver-specific PTP1B-deficient mice have normal body weight with improved insulin sensitivity, whereas adipose-PTP1B-deficient mice have increased body weight (6, 15, 16). These data suggest that PTP1B in peripheral tissues such as muscle and liver is an important mediator of peripheral insulin sensitivity, whereas PTP1B in the nervous system plays a critical role in regulating energy expenditure and adiposity (6).The adipocyte-derived hormone leptin plays an essential role in regulating energy homeostasis by acting on multiple tissues, most importantly the hypothalamus, to regulate food intake and energy expenditure (1). PTP1B−/− mice have enhanced basal and leptin-stimulated hypothalamic STAT3 phosphorylation and are hypersensitive to leptin''s effect on food intake and body weight (10, 67). The overexpression of PTP1B in heterologous cells dose dependently reduces the leptin-induced phosphorylation of JAK2 and STAT3 and inhibits leptin-stimulated STAT3-dependent reporter gene activation (10, 35, 39, 67). These and other data established that enhanced leptin sensitivity contributes to the leanness in PTP1B−/− mice. We sought to determine the cellular mechanisms underlying the altered energy homeostasis in the setting of PTP1B deficiency.AMP-activated protein kinase (AMPK) is a major mediator of leptin''s metabolic effects (43, 44). AMPK is a fuel-sensing enzyme complex activated by cellular stresses that increase AMP or deplete ATP, including hypoxia, ischemia, glucose deprivation, uncouplers of oxidative phosphorylation, exercise, and muscle contraction (66). AMPK also is activated by the antidiabetic drugs metformin (68) and the thiazolidinediones (21). Mechanisms involved in AMPK activation include (i) the binding of AMP to an allosteric site on the γ subunit, which renders the holoenzyme resistant to inactivating serine phosphatases and also may have direct allosteric effects on kinase activity (55), and (ii) phosphorylation by upstream AMPK kinases of the α (catalytic) subunits on Thr172, which is essential for kinase activity (29). Once activated, AMPK phosphorylates multiple downstream substrates, leading to the inhibition of ATP-utilizing pathways, such as fatty acid synthesis, and the activation of ATP-generating pathways, including fatty acid oxidation (34).The phosphorylation of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC) by AMPK results in the inhibition of ACC activity, decreased malonyl-CoA content, and a subsequent increase in fatty acid oxidation in skeletal muscle caused by the disinhibition of carnitine palmitoyltransferase 1 (27, 52, 62). The leptin stimulation of muscle fatty acid oxidation is mediated by AMPK (44). AMPK also is an important regulator of muscle mitochondrial biogenesis and function (7, 37, 48, 58, 63). This may, in part, be mediated by peroxisome proliferator-activated receptor γ (PPARγ)-coactivator 1α (PGC-1α), because AMPK induces the expression and phosphorylation of PGC-1α, which regulates mitochondrial biogenesis and muscle fiber type (31).In addition to a role for AMPK in leptin action in peripheral tissues, the inhibition of hypothalamic AMPK activity by leptin plays an important role in mediating leptin''s effect on food intake and energy homeostasis (43). This appears to involve neurons that express neuropeptide Y (NPY) and agouti-related peptide (AgRP), since the expression of constitutively active AMPK in the basomedial hypothalamus augments NPY/AgRP expression (43). Furthermore, the deletion of the AMPK α2 catalytic subunit specifically in these neurons results in leanness, whereas deletion in proopiomelanocortin (POMC)-expressing neurons results in mild obesity (13).To determine whether alterations in AMPK contribute to increased energy expenditure and leanness in PTP1B−/− mice, we investigated the AMPK pathway in peripheral tissues and hypothalamus. We demonstrate that the global absence of PTP1B alters AMPK and downstream biological processes in multiple tissues, and that neuronal PTP1B regulates AMPK activity in peripheral tissues in an isoform-specific manner. Our data establish a novel link between PTP1B and AMPK, two signaling molecules that are critical in the regulation of energy homeostasis.  相似文献   
202.
203.

Background

Although the relationship between allergic inflammation and lung carcinogenesis is not clearly defined, several reports suggest an increased incidence of lung cancer in patients with asthma. We aimed at determining the functional impact of allergic inflammation on chemical carcinogenesis in the lungs of mice.

Methods

Balb/c mice received single-dose urethane (1 g/kg at day 0) and two-stage ovalbumin during tumor initiation (sensitization: days -14 and 0; challenge: daily at days 6-12), tumor progression (sensitization: days 70 and 84; challenge: daily at days 90-96), or chronically (sensitization: days -14 and 0; challenge: daily at days 6-12 and thrice weekly thereafter). In addition, interleukin (IL)-5 deficient and wild-type C57BL/6 mice received ten weekly urethane injections. All mice were sacrificed after four months. Primary end-points were number, size, and histology of lung tumors. Secondary end-points were inflammatory cells and mediators in the airspace compartment.

Results

Ovalbumin provoked acute allergic inflammation and chronic remodeling of murine airways, evident by airspace eosinophilia, IL-5 up-regulation, and airspace enlargement. Urethane resulted in formation of atypical alveolar hyperplasias, adenomas, and adenocarcinomas in mouse lungs. Ovalbumin-induced allergic inflammation during tumor initiation, progression, or continuously did not impact the number, size, or histologic distribution of urethane-induced pulmonary neoplastic lesions. In addition, genetic deficiency in IL-5 had no effect on urethane-induced lung tumorigenesis.

Conclusions

Allergic inflammation does not impact chemical-induced carcinogenesis of the airways. These findings suggest that not all types of airway inflammation influence lung carcinogenesis and cast doubt on the idea of a mechanistic link between asthma and lung cancer.  相似文献   
204.

Background  

Bioinformatics is confronted with a new data explosion due to the availability of high throughput DNA sequencers. Data storage and analysis becomes a problem on local servers, and therefore it is needed to switch to other IT infrastructures. Grid and workflow technology can help to handle the data more efficiently, as well as facilitate collaborations. However, interfaces to grids are often unfriendly to novice users.  相似文献   
205.
Survival traits and selective genotyping datasets are typically not normally distributed, thus common models used to identify QTL may not be statistically appropriate for their analysis. The objective of the present study was to compare models for identification of QTL associated with survival traits, in particular when combined with selective genotyping. Data were simulated to model the survival distribution of a population of chickens challenged with Marek disease virus. Cox proportional hazards (CPH), linear regression (LR), and Weibull models were compared for their appropriateness to analyze the data, ability to identify associations of marker alleles with survival, and estimation of effects when all individuals were genotyped (full genotyping) and when selective genotyping was used. Little difference in power was found between the CPH and the LR model for low censoring cases for both full and selective genotyping. The simulated data were not transformed to follow a Weibull distribution and, as a result, the Weibull model generally resulted in less power than the other two models and overestimated effects. Effect estimates from LR and CPH were unbiased when all individuals were genotyped, but overestimated when selective genotyping was used. Thus, LR is preferred for analyzing survival data when the amount of censoring is low because of ease of implementation and interpretation. Including phenotypic data of non-genotyped individuals in selective genotyping analysis increased power, but resulted in LR having an inflated false positive rate, and therefore the CPH model is preferred for this scenario, although transformation of the data may also make the Weibull model appropriate for this case. The results from the research presented herein are directly applicable to interval mapping analyses.  相似文献   
206.
207.
Fractalkine/CX3CL1 and its specific receptor CX3CR1 are constitutively expressed in several regions of the CNS and are reported to mediate neuron-microglial interaction, synaptic transmission, and neuronal protection from toxic insults. CX3CL1 is released both by neuronal and astrocytic cells, whereas CX3CR1 is mainly expressed by microglial cells and neurons. Microglial cells efficiently migrate in response to CX3CL1, whereas no evidence is reported to date on CX3CL1-induced neuronal migration. For this reason, we have investigated in vitro the effects of CX3CL1 on basal migration of neurons and of the microglial and astrocytic populations, all these cells being obtained from the hippocampus and the cerebellum of newborn rats. We report that CX3CL1 stimulates microglial cell migration but efficiently reduces basal neuronal movement, regardless of the brain source. The effect of CX3CL1 is pertussis toxin (PTX) sensitive and PI3K dependent on hippocampal neurons, while it is PTX sensitive, PI3K dependent, and ERK dependent on cerebellar granules. Interestingly, CX3CL1 also increases neuron adhesion to the extracellular matrix component laminin, with mechanisms dependent on PTX-sensitive G proteins, and on the ERK and PI3K pathways. Both the reduction of migration and the increase of neuron adhesion require the activation of the beta(1) and alpha(6) integrin subunits with the exception of cerebellar neuron migration, which is only dependent on the beta(1) subunit. More importantly, in neurons, CX3CL1/CXCL12 cotreatment abolished the effect mediated by a single chemokine on chemotaxis and adhesion. In conclusion, our findings indicate that CX3CL1 reduces neuronal migration by increasing cell adhesion through integrin-dependent mechanisms in hippocampal and cerebellar neurons.  相似文献   
208.
Legume rhizobia symbiotic nitrogen (N2) fixation plays a critical role in sustainable nitrogen management in agriculture and in the Earth's nitrogen cycle. Signaling between rhizobia and legumes initiates development of a unique plant organ, the root nodule, where bacteria undergo endocytosis and become surrounded by a plant membrane to form a symbiosome. Between this membrane and the encased bacteria exists a matrix-filled space (the symbiosome space) that is thought to contain a mixture of plant- and bacteria-derived proteins. Maintenance of the symbiosis state requires continuous communication between the plant and bacterial partners. Here, we show in the model legume Medicago truncatula that a novel family of six calmodulin-like proteins (CaMLs), expressed specifically in root nodules, are localized within the symbiosome space. All six nodule-specific CaML genes are clustered in the M. truncatula genome, along with two other nodule-specific genes, nodulin-22 and nodulin-25. Sequence comparisons and phylogenetic analysis suggest that an unequal recombination event occurred between nodulin-25 and a nearby calmodulin, which gave rise to the first CaML, and the gene family evolved by tandem duplication and divergence. The data provide striking evidence for the recruitment of a ubiquitous Ca(2+)-binding gene for symbiotic purposes.  相似文献   
209.
Nucleoside transporter proteins are specialized proteins that mediate the transport of nucleosides and nucleoside analog drugs across the plasma membrane. The human equilibrative nucleoside transporter 1 (hENT1) is a member of these proteins and mediates cellular entry of gemcitabine, cytarabine, and fludarabine. The hENT1 expression has been demonstrated to be related with prognosis and activity of gemcitabine‐based therapy in breast, ampullary, lung, and pancreatic cancer. We investigated the immunohistochemical expression of hENT in tumor samples from 111 patients with resected gastric adenocarcinoma, correlating these data with clinical parameters and disease outcomes. None of the patients received chemotherapy or radiation therapy before or after surgery as a part of an adjuvant or neoadjuvant program. On univariate survival analysis, the hENT1 expression was associated with overall survival (OS) and disease free survival (DFS). Specifically, those patients with overexpression of hENT1 showed a shorter OS (P = 0.021) and a shorter DFS (P = 0.033). Considering only the node positive patients, higher hENT levels were associated with significantly shorter median DFS (21.7 months; 95% CI 11.1–32.4) compared with patients with low expression of hENT1. The hENT1 expression was defined, in the lymph‐node positive patients, as an independent prognostic factor (P = 0.019). Furthermore, considering only patients with diffuse or mixed tumors and lymph‐node positive, the expression of hENT1 was strongly related with DFS and OS. Immunohistochemistry for the hENT1 protein carries prognostic information in patients with resected gastric cancer and holds promise as a predictive factor in chemotherapy decisions. J. Cell. Physiol. 223: 384–388, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
210.
The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. It is expressed in the liver and the gastrointestinal tract, but also in several non-enterohepatic tissues including testis. Recently, FXR was identified as a negative modulator of the androgen-estrogen-converting aromatase enzyme in human breast cancer cells. In the present study we detected the expression of FXR in Leydig normal and tumor cell lines and in rat testes tissue. We found, in rat Leydig tumor cells, R2C, that FXR activation by the primary bile acid chenodeoxycholic acid (CDCA) or a synthetic agonist GW4064, through a SHP-independent mechanism, down-regulates aromatase expression in terms of mRNA, protein levels, and its enzymatic activity. Transient transfection experiments, using vector containing rat aromatase promoter PII, evidenced that CDCA reduces basal aromatase promoter activity. Mutagenesis studies, electrophoretic mobility shift, and chromatin immunoprecipitation analysis reveal that FXR is able to compete with steroidogenic factor 1 in binding to a common sequence present in the aromatase promoter region interfering negatively with its activity. Finally, the FXR-mediated anti-proliferative effects exerted by CDCA on tumor Leydig cells are at least in part due to an inhibition of estrogen-dependent cell growth. In conclusion our findings identify for the first time the activators of FXR as negative modulators of the aromatase enzyme in Leydig tumor cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号