首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5396篇
  免费   474篇
  国内免费   1篇
  5871篇
  2022年   38篇
  2021年   64篇
  2020年   69篇
  2019年   66篇
  2018年   99篇
  2017年   73篇
  2016年   106篇
  2015年   186篇
  2014年   189篇
  2013年   307篇
  2012年   316篇
  2011年   323篇
  2010年   229篇
  2009年   181篇
  2008年   248篇
  2007年   262篇
  2006年   270篇
  2005年   230篇
  2004年   228篇
  2003年   244篇
  2002年   242篇
  2001年   72篇
  2000年   61篇
  1999年   92篇
  1998年   77篇
  1997年   48篇
  1996年   58篇
  1995年   60篇
  1994年   57篇
  1993年   54篇
  1992年   58篇
  1991年   41篇
  1990年   47篇
  1989年   48篇
  1988年   40篇
  1987年   47篇
  1986年   38篇
  1985年   49篇
  1984年   62篇
  1983年   38篇
  1982年   60篇
  1981年   43篇
  1980年   59篇
  1979年   40篇
  1978年   40篇
  1977年   35篇
  1976年   34篇
  1975年   30篇
  1974年   30篇
  1973年   30篇
排序方式: 共有5871条查询结果,搜索用时 0 毫秒
71.
72.
We tested whether proteins implicated in Huntington's and other polyglutamine (polyQ) expansion diseases can cause axonal transport defects. Reduction of Drosophila huntingtin and expression of proteins containing pathogenic polyQ repeats disrupt axonal transport. Pathogenic polyQ proteins accumulate in axonal and nuclear inclusions, titrate soluble motor proteins, and cause neuronal apoptosis and organismal death. Expression of a cytoplasmic polyQ repeat protein causes adult retinal degeneration, axonal blockages in larval neurons, and larval lethality, but not neuronal apoptosis or nuclear inclusions. A nuclear polyQ repeat protein induces neuronal apoptosis and larval lethality but no axonal blockages. We suggest that pathogenic polyQ proteins cause neuronal dysfunction and organismal death by two non-mutually exclusive mechanisms. One mechanism requires nuclear accumulation and induces apoptosis; the other interferes with axonal transport. Thus, disruption of axonal transport by pathogenic polyQ proteins could contribute to early neuropathology in Huntington's and other polyQ expansion diseases.  相似文献   
73.
74.
Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [13C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates.  相似文献   
75.
Endothelial cell-selective adhesion molecule (ESAM) is an immunoglobulin-like transmembrane protein associated with endothelial tight junctions (TJ). Based on a yeast two-hybrid screen, we have identified the membrane-associated guanylate kinase protein MAGI-1 as an intracellular binding partner of ESAM. MAGI-1 is a multidomain adaptor protein, which binds to transmembrane, cytoskeletal, and signaling molecules, and has been localized to tight junctions in epithelial cells. MAGI-1 associates with the very C-terminal sequence of ESAM most likely through a PDZ domain-mediated interaction. The direct interaction between ESAM and MAGI-1 was confirmed by pull-down experiments. The two proteins formed stable complexes in transfected Chinese hamster ovary (CHO) cells, which could be immunoisolated. We found MAGI-1 to be associated with cell-cell contacts in human umbilical vein endothelial cells (HUVECs) and in mouse endothelium, where it colocalizes with ESAM. In CHO cells, recruitment of MAGI-1 to cell contacts required the presence of ESAM. Hence, ESAM may be involved in anchoring MAGI-1 at endothelial tight junctions.  相似文献   
76.
Chao LK  Hua KF  Hsu HY  Su YC  Chang ST 《Bioresource technology》2006,97(18):2462-2465
Alcoholic extracts from bark of Calocedrus macrolepis var. formosana Florin (Cupressaceae) were extracted successively using n-hexane, dichloromethane, ethyl acetate, 1-butanol and water, which gave 34.8%, 34.1%, 24.1%, 3.3% and 3.7% soluble fractions, respectively. Antioxidation activity of these fractions by DPPH assay and dissimilar IC50 values of the DPPH showed that ethyl acetate fraction had the best antioxidant activity; its IC50 was 2.6 microg/ml. Analyses of the composition and anti-inflammatory activity of the subfractions from n-C6H14 fraction showed that the T3 and H5ppt had the best anti-inflammatory activity in LPS-stimulated murine macrophage J774A. 1 cells, respectively; moreover, their major constituent was sugiol (T3 37.1%, H5ppt 81.1%), which at dosages of 10 microg/ml inhibited proIL-1beta protein production completely. Furthermore, the T1 also exhibited anti-inflammatory activity, and its major constituent was ferruginol (above 85.6%).  相似文献   
77.
Coregonine fish represent the most successful evolutionary lineage of salmonids with Coregonus as the most speciose salmonid genus inhabiting numerous postglacial lakes across the northern hemisphere. We isolated and characterized 31 polymorphic microsatellite loci in Coregonus clupeaformis with an average number of 5.3 alleles per locus (range three to eight) and an overall expected heterozygosity of 0.74 ± 0.11. Two loci revealed significant linkage associations through analyses of mapping families. Six additional salmonid taxa assessed for cross‐species amplification revealed between 18 and 26 positive amplifications and between two and 12 polymorphic loci per species.  相似文献   
78.
The plasmid hik31 operon (P3, slr6039‐slr6041) is located on the pSYSX plasmid in Synechocystis sp. PCC 6803. A P3 mutant (ΔP3) had a growth defect in the dark and a pigment defect that was worsened by the addition of glucose. The glucose defect was from incomplete metabolism of the substrate, was pH dependent, and completely overcome by the addition of bicarbonate. Addition of organic carbon and nitrogen sources partly alleviated the defects of the mutant in the dark. Electron micrographs of the mutant revealed larger cells with division defects, glycogen limitation, lack of carboxysomes, deteriorated thylakoids and accumulation of polyhydroxybutyrate and cyanophycin. A microarray experiment over two days of growth in light‐dark plus glucose revealed downregulation of several photosynthesis, amino acid biosynthesis, energy metabolism genes; and an upregulation of cell envelope and transport and binding genes in the mutant. ΔP3 had an imbalance in carbon and nitrogen levels and many sugar catabolic and cell division genes were negatively affected after the first dark period. The mutant suffered from oxidative and osmotic stress, macronutrient limitation, and an energy deficit. Therefore, the P3 operon is an important regulator of central metabolism and cell division in the dark.  相似文献   
79.
Inter‐organ communication is essential for plants to coordinate development and acclimate to mechanical environmental fluctuations. The aim of this study was to investigate long‐distance signaling in trees. We compared on young poplars the short‐term effects of local flame wounding and of local stem bending for two distal responses: (1) stem primary growth and (2) the expression of mechanoresponsive genes in stem apices. We developed a non‐contact measurement method based on the analysis of apex images in order to measure the primary growth of poplars. The results showed a phased stem elongation with alternating nocturnal circumnutation phases and diurnal growth arrest phases in Populus tremula × alba clone INRA 717‐1B4. We applied real‐time polymerase chain reaction (RT‐PCR) amplifications in order to evaluate the PtaZFP2, PtaTCH2, PtaTCH4, PtaACS6 and PtaJAZ5 expressions. The flame wounding inhibited primary growth and triggered remote molecular responses. Flame wounding induced significant changes in stem elongation phases, coupled with inhibition of circumnutation. However, the circadian rhythm of phases remained unaltered and the treated plants were always phased with control plants during the days following the stress. For bent plants, the stimulated region of the stem showed an increased PtaJAZ5 expression, suggesting the jasmonates may be involved in local responses to bending. No significant remote responses to bending were observed.  相似文献   
80.

Background

Respiratory syncytial virus (RSV) infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins.

Objective

To investigate whether IgG purified from bovine milk (bIgG) can modulate immune responses against human RSV.

Methods

ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR) or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated.

Results

bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV.

Conclusions

The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号