首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3908篇
  免费   261篇
  国内免费   1篇
  2022年   32篇
  2021年   45篇
  2020年   35篇
  2019年   48篇
  2018年   65篇
  2017年   65篇
  2016年   110篇
  2015年   173篇
  2014年   174篇
  2013年   282篇
  2012年   308篇
  2011年   262篇
  2010年   203篇
  2009年   160篇
  2008年   242篇
  2007年   219篇
  2006年   208篇
  2005年   183篇
  2004年   184篇
  2003年   185篇
  2002年   167篇
  2001年   39篇
  2000年   43篇
  1999年   39篇
  1998年   53篇
  1997年   39篇
  1996年   34篇
  1995年   43篇
  1994年   36篇
  1993年   33篇
  1992年   28篇
  1991年   27篇
  1990年   35篇
  1989年   26篇
  1988年   17篇
  1987年   18篇
  1985年   25篇
  1984年   34篇
  1983年   29篇
  1982年   19篇
  1981年   29篇
  1980年   10篇
  1979年   14篇
  1978年   13篇
  1977年   13篇
  1976年   11篇
  1975年   22篇
  1974年   11篇
  1971年   9篇
  1968年   9篇
排序方式: 共有4170条查询结果,搜索用时 20 毫秒
991.
Determination of mitochondrial DNA (mtDNA) heteroplasmy for the diagnosis of patients with mitochondrial disorders is a difficult task due to the coexistence of wild-type and mutant genomes. We have developed a new method for genotyping and quantification of heteroplasmic point mutations in mtDNA based on the SNaPshot technology. We compared the data of this method with the widely used "last hot-cycle" PCR-RFLP method by studying 15 patients carrying mtDNA mutations. We showed that SNaPshot is an accurate, reproducible, and sensitive technique for the determination of heteroplasmic mtDNA mutations in different tissues from patients, and it is a promising system to be used in prenatal and postnatal diagnosis of mtDNA-associated disorders.  相似文献   
992.
Genetic testing of Duchenne and Becker muscular dystrophies (DMD/BMD) is a difficult task due to the occurrence of deletions or duplications within dystrophin (DMD) gene that requires dose sensitive tests. We developed three multiplex quantitative real-time PCR assays for dystrophin exon 5, 45, and 51 within two major hotspots of deletion/duplication. Each exon was co-amplified with a reference X-linked gene and the copy number of the target fragment was calculated by comparative threshold cycle method (delta deltaC(t)). We compared the performance of this method with previously described end-point PCR fluorescent analysis (EPFA) by studying 24 subjects carrying DMD deletions or duplications. We showed that Q-PCR is an accurate and sensitive technique for the identification of deletions and duplications in DMD/BMD. Q-PCR is a valuable tool for independent confirmation of EPFA screening, particularly when deletions/duplications of single exons occur or for rapid identification of known mutations in at risk carriers.  相似文献   
993.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch-Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch-Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C-->T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRT(Sardinia). The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency.  相似文献   
994.
In this report, we have developed a novel method to identify compounds that rescue the dystrophin-glycoprotein complex (DGC) in patients with Duchenne or Becker muscular dystrophy. Briefly, freshly isolated skeletal muscle biopsies (termed skeletal muscle explants) from patients with Duchenne or Becker muscular dystrophy were maintained under defined cell culture conditions for a 24-h period in the absence or presence of a specific candidate compound. Using this approach, we have demonstrated that treatment with a well-characterized proteasome inhibitor, MG-132, is sufficient to rescue the expression of dystrophin, -dystroglycan, and -sarcoglycan in skeletal muscle explants from patients with Duchenne or Becker muscular dystrophy. These data are consistent with our previous findings regarding systemic treatment with MG-132 in a dystrophin-deficient mdx mouse model (Bonuccelli G, Sotgia F, Schubert W, Park D, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, and Lisanti MP. Am J Pathol 163: 1663–1675, 2003). Our present results may have important new implications for the possible pharmacological treatment of Duchenne or Becker muscular dystrophy in humans. muscular dystrophy; membrane proteins; MG-132  相似文献   
995.
Lubeluzole [(S)-9] has been synthesized by a convergent synthesis, alkylation of N-methyl-N-piperidin-4-yl-1,3-benzothiazol-2-amine (4) with (+)-(R)-1-chloro-3-(3,4-difluorophenoxy)propan-2-ol [(+)-(R)-8] being the key step. Alcohol (+)-(R)-8 was obtained from commercially available (R)-epichlorohydrin [(R)-6], while the thiazole derivative 4 was easily obtained starting from N-protected piperidin-4-one (1) in a three-step procedure. The same method was used in order to obtain both the (R)-stereoisomer of lubeluzole [(R)-9] and its racemate [(RS)-9]. Overall yields ranged from 20% to 35%. The enantiomeric excess values for (S)-9 and (R)-9 were 97% and 94% respectively, as analyzed by chiral HPLC.  相似文献   
996.
Quantitative trait loci for baseline erythroid traits   总被引:1,自引:0,他引:1  
A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline erythroid parameters in F2 intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified multiple significant QTL for red blood cell (RBC) count, hemoglobin (Hgb) and hematocrit (Hct) levels, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean cell hemoglobin concentration (CHCM). We identified four RBC count QTL: Rbcq1 (Chr 1, peak LOD score at 62 cM,), Rbcq2 (Chr 4, 60 cM), Rbcq3 (Chr 11, 34 cM), and Rbcq4 (Chr 10, 60 cM). Three MCV QTL were identified: Mcvq1 (Chr 7, 30 cM), Mvcq2 (Chr 11, 6 cM), and Mcvq3 (Chr 10, 60 cM). Single significant loci for Hgb (Hgbq1, Chr 16, 32 cM), Hct (Hctq1, Chr 3, 42 cM), and MCH (Mchq1, Chr 10, 60 cM) were identified. The data support the existence of a common RBC/MCH/MCV locus on Chr 10. Two QTL for CHCM (Chcmq1, Chr 2, 48 cM; Chcmq2, Chr 9, 44 cM) and an interaction between Chcmq2 with a locus on Chr 19 were identified. These analyses emphasize the genetic complexity underlying the regulation of erythroid peripheral blood traits in normal populations and suggest that genes not previously recognized as significantly impacting normal erythropoiesis exist.  相似文献   
997.
XIAP is an apoptotic regulator protein that binds to the effector caspases -3 and -7 through its BIR2 domain, and to initiator caspase-9 through its BIR3 domain. Molecular docking studies suggested that Smac-DIABLO may antagonize XIAP by concurrently targeting both BIR2 and BIR3 domains; on this basis bivalent Smac-mimetic compounds have been proposed and characterized. Here, we report the X-ray crystal structure of XIAP-BIR3 domain in complex with a two-headed compound (compound 3) with improved efficacy relative to its monomeric form. A small-angle X-ray scattering study of XIAP-BIR2BIR3, together with fluorescence polarization binding assays and compound 3 cytotoxicity tests on HL60 leukemia cell line are also reported. The crystal structure analysis reveals a network of interactions supporting XIAP-BIR3/compound 3 recognition; moreover, analytical gel-filtration chromatography shows that compound 3 forms a 1:1 stoichiometric complex with a XIAP protein construct containing both BIR2 and BIR3 domains. On the basis of the crystal structure and small-angle X-ray scattering, a model of the same BIR2-BIR3 construct bound to compound 3 is proposed, shedding light on the ability of compound 3 to relieve XIAP inhibitory effects on caspase-9 as well as caspases -3 and -7. A molecular modeling/docking analysis of compound 3 bound to cIAP1-BIR3 domain is presented, considering that Smac-mimetics have been shown to kill tumor cells by inducing cIAP1 and cIAP2 ubiquitination and degradation. Taken together, the results reported here provide a rationale for further development of compound 3 as a lead in the design of dimeric Smac mimetics for cancer treatment.  相似文献   
998.
999.
Friedreich ataxia (FRDA), an autosomal recessive neurological dysfunction that severely impairs motor coordination and reduction of life expectancy in humans, is caused by a deficiency in frataxin, a nuclear-encoded mitochondrial protein. Recently, a frataxin ortholog has been identified in Arabidopsis thaliana, named AtFH, with a transit peptide for localization in mitochondria and 65% sequence identity with human frataxin (Busi et al. FEBS Lett 576:141–144, 2004). Complementation of S. cerevisiae mutant strain Δyfh1 deficient in frataxin with AtFH, proved that the plant isoform is a functional protein, able to restore normal respiration and growth rates in the mutant yeast (Busi et al. FEBS Lett 576:141–144, 2004). AtFH is localized in mitochondria as its animal counterparts (Busi et al. Plant J 48:873–882, 2006); it is expressed mainly in flowers and developing embryos and it is an essential protein, since the knocking out of AtFH gene causes arrest of embryo development at the globular stage (Vazzola et al. FEBS Lett 581:667–672, 2007). A T-DNA insertional A.thaliana mutant showing a greater than 50% reduction of AtFH protein content, named atfh-1, has impaired activity of two mitochondrial enzymes possessing [Fe-S] clusters: aconitase and succinate dehydrogenase (Busi et al. Plant J 48:873–882, 2006). The results obtained in the last ten years on animal systems can contribute, without any doubt, to the elucidation of the role of frataxin in plant mitochondria; however, mitochondria of photosynthetically active cells, differently from animal ones, are not the major source of Reactive Oxygen Species (ROS) which could suggest possible differences in function between plant and animal frataxin.  相似文献   
1000.
Mitochondrial carriers are a family of proteins that transport metabolites, nucleotides, and cofactors across the inner mitochondrial membrane thereby connecting cytosolic and matrix functions. The essential cofactor coenzyme A (CoA) is synthesized outside the mitochondrial matrix and therefore must be transported into mitochondria where it is required for a number of fundamental processes. In this work we have functionally identified and characterized SLC25A42, a novel human member of the mitochondrial carrier family. The SLC25A42 gene (Haitina, T., Lindblom, J., Renström, T., and Fredriksson, R., 2006, Genomics 88, 779–790) was overexpressed in Escherichia coli, purified, and reconstituted into phospholipid vesicles. Its transport properties, kinetic parameters, and targeting to mitochondria demonstrate that SLC25A42 protein is a mitochondrial transporter for CoA and adenosine 3′,5′-diphosphate. SLC25A42 catalyzed only a counter-exchange transport, exhibited a high transport affinity for CoA, dephospho-CoA, ADP, and adenosine 3′,5′-diphosphate, was saturable and inhibited by bongkrekic acid and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A42 is to import CoA into mitochondria in exchange for intramitochondrial (deoxy)adenine nucleotides and adenosine 3′,5′-diphosphate. This is the first time that a mitochondrial carrier for CoA and adenosine 3′,5′-diphosphate has been characterized biochemically.The mitochondrial carrier family, or the solute carrier family 25 (SLC25),3 comprises a large group of proteins that transport a variety of substrates across the inner mitochondrial membrane and, in a few cases, across other membranes (1, 2). Common structural features of the mitochondrial carrier family members consist in a tripartite structure (three repeats of ∼100 amino acids), the presence of two transmembrane α-helices separated by hydrophilic loops in each repeat, and the presence of a signature motif at the C terminus of the first helix in each repeat (Ref. 3 and references therein). The SLC25 family is by far the largest of the currently known 43 SLC families. The Saccharomyces cerevisiae genome contains 35 members, that of Arabidopsis thaliana 58, and the human genome at least 48 SLC25 members. Until now, nearly 30 members and isoforms of this family have been identified in humans. These include the uncoupling protein and the carriers for ADP/ATP, phosphate, 2-oxoglutarate/malate, citrate, carnitine/acylcarnitine, dicarboxylates, ornithine and other basic amino acids, oxodicarboxylates, deoxynucleotides and thiamine pyrophosphate, aspartate-glutamate, glutamate, S-adenosylmethionine, ATP-Mg/Pi, pyrimidine nucleotides, and adenine nucleotides in peroxisomes (see Ref. 1 for a review and Refs. 48). The present investigation was undertaken to identify the function of SLC25A42, a novel member of the SLC25 family recently found in the human genome (9). SLC25A42 is 318 amino acids long and is highly expressed in virtually all tissues, in most at higher levels than many other SLC25 family members (9).In this study we provide direct evidence that SLC25A42 is a mitochondrial transporter for CoA and PAP. SLC25A42 was overexpressed in Escherichia coli, purified, reconstituted in phospholipid vesicles, and shown to transport CoA, dephospho-CoA, PAP, and (deoxy)adenine nucleotides with high specificity and by a counter-exchange mechanism. The main function of SLC25A42 is probably to catalyze the entry of CoA into the mitochondria in exchange for adenine nucleotides and PAP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号